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A new concept, Structure Genome (SG), is proposed to fill the gap between materials
genome and structural analysis. SG acts as the basic building block of the structure con-
necting materials to structures and the mechanics of SG governs the necessary information
to link materials genome and structural analysis. SG also enables a powerful approach
to construct efficient yet high-fidelity constitutive models for composite structures over
multiple length scales. No apriori assumptions will be used in the formulation and mul-
tiscale constitutive modeling is mathematically decoupled from the structural analysis. A
general-purpose computer code called SwiftCompTM is developed to implement the me-
chanics of Structure Genome along with various examples to demonstrate its application
and power. SwiftCompTM can be used as plug-in for commercial finite element codes to
treat composites as “black aluminum” in structural design and analysis with negligible loss
of accuracy.

I. Introduction

The recently launched Materials Genome Initiative (MGI),1 resonating the challenges pointed out earlier
in the National Research Council report on Integrated Computational Materials Engineering (ICME),2 aims
to deliver the required infrastructure and training to accelerate discovery, developing, manufacturing, and
deploying of advanced materials in a more expeditious and economical way. It is true that accelerating the
pace of discovery and deployment of advanced materials is crucial to achieving global competitiveness as
materials with nonexisting properties will bring transformative changes in science and technology. However,
material by definition is a matter from which a thing can be made of. For example, structural materials
are substances used to make structures. Ultimately speaking, it is not the material performance, but the
structural performance or rather system performance we are after. Thus, materials genome must integrate
with structural analysis to maximize the benefits of accelerated development of advanced structural materials
to be delivered by MGI and ICME.

Nowadays, structural analyses are routinely carried out using the finite element analysis (FEA) in terms of
three-dimensional (3D) solid elements, two-dimensional (2D) plate or shell elements or one-dimensional (1D)
beam elements (see Figure 1). For structures made of isotropic homogeneous materials, material properties
characterized in materials genome are direct inputs for solid elements, and these properties combined with
geometric properties of the structure can be used for plate/shell/beam elements. This implies that materials
genome can be directly linked with structural analysis. However, such simplicity does not exist for structures
made of composites which are usually anisotropic and heterogeneous. Consider structural analysis of the
UH-60 (8 ton helicopter) all composite rotor blade. The blade is of length 8.6 m, and chord 0.72 m. Main
D-spar is composed of 60 graphite/epoxy plies, and each ply has thickness of 125 µm. To directly use the
properties of graphite/epoxy composite tape delivered by materials genome in structural analysis, we need
to use at least one 3D solid element through the ply thickness. Supposing we use 20-noded brick elements
with a 1 to 10 thickness-length ratio, it is estimated that around 11.5 billions of degrees of freedom is needed
for the blade analysis.3 Such a huge FEA model is too costly for effective structural design and analysis. The
standard practice in helicopter industry is to model rotor blades as beams.4 To this end, models are needed
to take the material properties out of materials genome as inputs to compute the beam properties needed
for the structural analysis and recover the 3D stress fields within the original material for failure prediction
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Beam Elements

3D Elements

Shell Elements

Plate Elements

Figure 1. Typical structural elements

according to the allowables and failure criteria characterized by materials genome. Clearly there is a gap
existing between materials genome and structural analysis.

In the past several decades, many models have been proposed to fill this gap, including both micromechan-
ics models and structural mechanics models. These models are mainly based on various apriori assumptions.
Models are either efficient but too simplistic to be predictive, or accurate but too computationally intensive
to be used for effective design. These models usually cannot be used in general industrial settings particularly
in the situations where the apriori assumptions will be violated. Moreover, structural mechanics models are
not seamlessly unified with micromechanics models, creating difficulty for rigorous modeling of composite
structures which are multiscale in nature. The present modeling capabilities for realistic composite structures
are still very limited, and lagging much behind of their manufacturing techniques. For example, the recent
world-wide failure analysis proved that prediction of strength for composites laminates, one of the simplest
composite structures, has been elusive.5,6 Nevertheless, we have been successfully designed and manufac-
tured composites in many engineering systems. We do so with the conservative Edisonian approach based
on exhaustive testings. This not only attributes to the expensive development cost of composites relative to
conventional materials, but also causes significant delay in time-to-market of a product.

It is thus encouraging to see that ICME and MGI try to improve our modeling capability through an
integrated computational framework. However, one should be careful about what integrated computational
framework entails for predictive modeling. Simply linking models at different scales and streamlining in-
formation passing between different models are not sufficient. Unpinning theory must be formulated in
such a way that provides a unified way for the passing of information between models. And also material
modeling must be performed with the corresponding structural analysis in mind. This is particularly true
for composites as the traditional boundary between materials and structures is quickly disappearing. Some
modeling should be done at the material level through ICME and MGI, but some modeling must be done at
the structural level. For example, for composite laminated plates, it is reasonable to expect ICME or MGI to
deliver us the properties of fiber, matrix, their interfaces, and even those of each lamina (composite tapes),
but it is out of the scope of ICME or MGI to obtain plate properties for the laminate for the structural
analysis using plate elements.

Another significant disadvantage of most approaches to composite structural analyses is that they lack
a direct connection with the analysis of structures made of isotropic homogeneous materials. FEA has
been very successful and well established for design and analysis of these structures and commercial codes
such as NASTRAN, ABAQUS, ANSYS, etc. are industrial standard. However, such success has not been
transplanted to composite structures. The main reason is that most models for composite structures are very
different from those models used for structures made of isotropic homogeneous materials and require special
purpose structural elements not available in conventional FEA. Note that many commercial codes are adding
a separate composites module into their packages but those modules are different analysis codes implementing
special purpose structural elements. The direct connection with conventional structural elements is missing.
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II. Structure Genome

To fill the gap between materials genome and composite structural analysis, avoid the disadvantages of
current modeling approaches of composites, and enable a direct connection with conventional FEA, this
paper will present the Structure Genome (SG) concept. According to MGI,1

A genome is a set of information encoded in the language of DNA that serves as a blueprint
for an organism’s growth and development. The world genome, when applied in non-biological
contexts, connotes a fundamental building block toward a larger purpose.

Motivated by this description, we define Structure Genome (SG) as the smallest mathematical building block
(or a cell in biological contexts) of the structure containing many such building blocks. SG not only describes
the matter but also carries the information bridging materials genome and structural analysis. SG is build
upon the concept of the representative structural element (RSE),7,8 to emphasize the fact that it contains all
the constitutive information needed for a structure the same fashion as the genome contains all the intrinsic
information for an organism’s growth and development. For periodic structures, it is easy to identify the
SG as described later. However, for real structures in engineering, we rely on the expert opinion of the
analysts to determine what will be the smallest, representative building block of the structure. This liberal
definition is intended for maximizing the freedom in choosing the SG. It can be justified from the view point
of material characterization using experiments. When experimentalists want to find properties of a material,
they cut representative pieces of the material according to their own judgment and do the testing to get the
properties and associated statistics. As we are not doing physical experiments, SG is thus defined as the
smallest mathematical building block.

+

2D SG 3D SG

1D SG

Figure 2. SG for 3D structure

A. SG for 3D Structures

If the structural analysis uses 3D solid elements (Figure 2), SG serves a similar role as representative volume
element (RVE), a concept well known in micromechanics. However, they are fundamentally different. For
example, for a structure made of composites featuring 1D heterogeneity (e.g. binary composites made
of two alternating layers), SG will be a straight line with two segments denoting corresponding phases.
Mathematically speaking, we can repeat this straight line in plane to build the two layers of the binary
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composite, then we can repeat the binary composite out of plane to build the entire structure. For a
structure made of composites featuring 2D heterogeneity (e.g. continuous unidirectional fiber reinforced
composites), the SG will be a 2D domain, and for a structure made of composites featuring 3D heterogeneity
(e.g. particle reinforced composites), the SG will be a 3D volume. Despite of the dimensionality of SGs, the
effective properties should remain 3D for the 3D macroscopic structural analysis. For example, for linear
elastic behavior, one should be able to carry out a micromechanical analysis over the 1D SG to obtain the
complete 6×6 stiffness matrix. Clearly, SG uses the lowest dimension, thus highest efficiency, to describe the
heterogeneity, while RVE dimension is determined by heterogeneity and by what type of properties required
for the macroscopic structural analysis. If 3D properties are needed for a 3D structural analysis of continuous
unidirectional fiber reinforced composites, a 3D RVE is usually required [9].

B. SG for Dimensionally Reducible Structures

+

2D SG

3D SG

Figure 3. SG for beam-like structures

Another feature of SG not available in RVE is that SG allows direct connection with the macroscopic
structural analysis, particularly for dimensionally reducible structures which have one or two dimensions
much smaller than the other dimensions. For example, the structural analysis of slender structures (beam-
like structures) can use beam elements (Figure 3). If the beam has uniform cross-sections which could be
made of homogeneous materials or composites, its SG is the 2D cross-sectional domain as we can repeat the
cross-section along the beam reference line to build the entire structure. This inspires an astoundingly new
perspective toward beam theories, an important traditional branch of structural mechanics. If we consider
the beam reference line as a 1D continuum, every material point of this continuum has a 2D cross-section as
its microstructure. In other words, structural mechanics can be effectively viewed as a specific application of
micromechanics. If the beam is also heterogeneous in the spanwise direction, we need a 3D SG to describe
the microstructure of the 1D continuum, the behavior of which is governed by the 1D macroscopic beam
analysis.

If the structural analysis uses plate/shell elements, SG can also be chosen properly. For illustrative
purpose, typical SGs of plate-like structures are sketched in Figure 4. If the plate-like structures feature no
in-plane heterogeneities such as composite laminates, the SG is a material line along the thickness direction
with each segment denoting the corresponding material of each layer. For a sandwich panel with a core cor-
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+

2D SG 3D SG1D SG

Figure 4. SG for plate-like structures

rugated in one direction, the SG is 2D, and if the panel is heterogeneous in both in-plane directions, the SG is
3D. Despite of different dimensions of SG, what we want out of the constitutive modeling is structural prop-
erties for the corresponding structural analysis (such as A, B, D matrices for the classical plate theory) and
recovery relations to express the original 3D fields in terms of the global behavior (e.g. moments, curvatures,
etc.) obtained from the plate/shell analysis. We know that theories of beams, plates, shells traditionally
belong to structural mechanics, the SG concept enables us to treat them as special micromechanics theories.
For a plate/shell-like structure, if we consider the reference surface as a 2D continuum, every material point
of this continuum has the SG as its microstructure. Plate/shell theory constructed using the SG concept
can handle buildup structures (see Figure 5) as long as their external contours look like plates or shells, that
is, the thickness is much smaller than the in-plane dimensions.

Figure 5. Typical buildup structures

Clearly SG can serve as the fundamental building block of a structure, no matter whether it is a 3D
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structure, beam, plate, or shell. SG also bridges materials genome and structural analysis as SG itself is
formed by materials. For SG to not merely remain as a concept, we need to develop the theory necessary
to govern SG so that there is a two-way communication between materials genome and structural analy-
sis: information from materials genome can be rigorously passed to structural analysis to predict structural
performance and information from structural analysis can be passed back for material failure prediction ac-
cording to materials genome. We develop such a theory with the objective to directly connect with structural
analysis and minimize the loss of information from materials genome to structural analysis. As mentioned
previously, structures are usually analyzed using structural elements in FEA. Underpinning each element
type, there is a corresponding structural model containing three types of equations describing kinematics,
kinetics, and constitutive relations. Kinematics deals with strain-displacement relations, and compatibility
equations, kinetics deals with stress and equations of motion. Constitutive relations deal with stress-strain
relations. Both kinematics and kinetics can be formulated exactly within the framework of continuum me-
chanics. Constitutive relations are ultimately approximate as we are using a hypothetical continuum to
approximate the underlining atomic structure of matter. Some criterion is needed for us to minimize the loss
of information between materials genome and structural analysis. For elastic materials, this can be achieved
by minimizing the difference between the strain energy of the materials stored in SG and that stored in the
structural model of structural analysis. The mechanics of Structure Genome is derived below.

III. Mechanics of Structure Genome

SG serves as the link of the original heterogeneous structures with microscopic details and the hypo-
thetical homogeneous continuum used in the macroscopic structural analysis. Thus, we need to formulate
its mechanics in such a way that the kinematics and energetics of the original heterogeneous structure can
be expressed in terms of those of the final macroscopic structural model. Note that the final macroscopic
homogenized structures are imaginary and are created by analysts to approximate the original heterogeneous
structures. For this very reason, we call the final macroscopic homogenized structure as the macroscopic
structural model.

A. Kinematics

The first step in formulating the mechanics of SG is to express the kinematics, including the displacement
field and the strain field, of the original heterogeneous structures in terms of those of the macroscopic
structural model. Although the SG concept is applicable to heterogeneous structures made of materials
admitting general continuum description such as the Cosserat continuum,10 we are focusing on materials
admitting the Cauchy continuum description: the displacement field in a 3D space is described in terms of
three translations and the corresponding strain field can be defined in terms of the stretch tensor obtained
through the polar decomposition of the deformation gradient tensor.

Let us use xi, called macro coordinates here, to denote the coordinates describing the original hetero-
geneous structure. The coordinates could be general curvilinear coordinates. However, without loss of
generality, we choose an orthogonal system of arc-length coordinates. If the structure is dimensionally re-
ducible, some of the macro coordinates xα, called eliminated coordinates here, correspond to the dimensions
eliminated in the macroscopic structural model. (Here and throughout the paper, Greek indices assume
values corresponding to the eliminated macro coordinates, Latin indices k, l,m assume values corresponding
to the macro coordinates remaining in the macroscopic structural model, and other Latin indices assume 1,
2, 3. Repeated indices are summed over their range except where explicitly indicated).

For beam-like structures, only x1, describing the beam reference line, will remain in the final beam model,
and x2, x3, the cross-sectional coordinates, will be the eliminated coordinates; for plate/shell-like structures,
x1 and x2, describing the plate/shell reference surface, remain in the final plate/shell model, and x3, the
thickness coordinate, will be the eliminated coordinate. For this reason, we also call the beam model as
1D continuum model as all the unknown fields are functions of x1 only although the 1D beam model could
predict 3D behavior such as translations in three directions. Similarly, we call the plate/shell model as 2D
continuum model as all the unknown fields are functions of x1 and x2 although the 2D plate/shell model
can predict 3D behavior.

In view of the fact that the size of SG is much smaller than the overall size of the macroscopic structure,
we introduce a set of micro coordinates yi = xi/ε with ε being a small parameter to describe the SG. This
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basically enables a zoom-in view of the SG at the size similar as the macroscopic structure. If the SG is 1D,
only y3 is needed; if the SG is 2D, y2 and y3 are needed; if the SG is 3D, all three coordinates y1, y2, y3 are
needed.

In multiscale structural modeling, it is postulated that all the information can be obtained from the
SG in combination with the macroscopic structural model. In other words, a field function of the original
heterogeneous structure can be generally written as a function of the macro coordinates xk which remain in
the macroscopic structural model and the micro coordinates yj . The partial derivative of a function f(xk, yj)
can be expressed as

∂f(xk, yj)

∂xi
=
∂f(xk, yj)

∂xi
|yj=const +

1

ε

∂f(xk, yj)

∂yi
|xk=const ≡ f,i +

1

ε
f|i (1)

Note ε is just a book keeping parameter here to facilitate the asymptotic analysis. It has no significance in
the numerical implementation. Choosing an ε will fix the corresponding SG domain. εyi together remain
invariant as equal to xi.

Letting bk denote the tangent vector to xk for the undeformed configuration, one is then free to chose
bα tangent to xα to form an orthonormal triad bi. Note bi chosen this way are functions of xk only. For
example, for beam-like structures, we chose b1 to be tangent to the beam reference line x1, and b2 and b3
as unit vectors tangent to the cross-sectional coordinates xα. We can describe the position of any material
point of the heterogeneous structure by its position vector r relative to a point O fixed in an inertial frame
such that

r(xk, yα) = ro(xk) + εyαbα(xk) (2)

where ro is the position vector from O to a material point of the macroscopic structural model. Note here
xk denote only those coordinates remaining in the final macroscopic structural model, and yα correspond
to eliminated coordinates xα. Repeated index implies summation over its own range. Because xk is the
arc-length coordinate, we have

bk =
∂ro
∂xk

(3)

For beam-like structures, the undeformed configuration can be described as

r(x1, y2, y3) = ro(x1) + εy2b2(x1) + εy3b3(x1) (4)

because the dimensions along x2 and x3, corresponding to εy2 and εy3, are eliminated in the macroscopic
structural model, no matter whether the SG is 2D or 3D (see Figure 3).

For plate/shell-like structures, the undeformed configuration can be described as

r(x1, x2, y3) = ro(x1, x2) + εy3b3(x1, x2) (5)

because the thickness dimension along x3, corresponding to εy3, is eliminated in the macroscopic structural
model, no matter whether the SG is 1D, 2D, or 3D (see Figure 4).

For 3D structures, the undeformed configuration can be described as

r(x1, x2, x3) = ro(x1, x2, x3) (6)

because all the macro coordinates remain in the macroscopic structural model, no matter whether the SG
is 1D, 2D, or 3D (see Figure 2).

When the heterogeneous structure deforms, the particle that had position vector r in the undeformed
configuration now has position vector R in the deformed configuration, such as

R(xk, yj) = Ro(xk) + εyαBα(xk) + εwi(xk, yj)Bi(xk) (7)

where Ro denotes the position vector of the deformed homogenized structure, yj are the micro coordinates
used to describe the SG, Bi forms a new orthonormal triad for the deformed configuration, and εwi are
fluctuating functions introduced to accommodate all possible deformation other than those described by Ro

and Bi. The small parameter ε is added due to traditional reasons. But as it is mentioned previously, it
is not a number of significance and εwi remain as the unique solution. Note wi are usually called warping
functions in structural mechanics and we call them as fluctuating functions for the reason that structural

7 of 22

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 B

R
IS

T
O

L
 U

N
IV

E
R

SI
T

Y
 o

n 
O

ct
ob

er
 2

, 2
01

8 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

02
01

 



mechanics can be viewed as a special application of micromechanics using the concept of SG. Bi can be
related with bi through a direction cosine matrix, Cij = Bi · bj , subject to the requirement that these two
triads are the same in the undeformed configuration.

For beam-like structures featuring 2D SGs, the deformed configuration can be described as

R(x1, y2, y3) = Ro(x1) + εy2B2(x1) + εy3B3(x1) + εwi(x1, y2, y3)Bi(x1) (8)

For beam-like structures featuring 3D SGs, the deformed configuration can be described as

R(x1, y1, y2, y3) = Ro(x1) + εy2B2(x1) + εy3B3(x1) + εwi(x1, y1, y2, y3)Bi(x1) (9)

For plate/shell-like structures featuring 1D SGs, the deformed configuration can be described as

R(x1, x2, y3) = Ro(x1, x2) + εy3B3(x1, x2) + εwi(x1, x2, y3)Bi(x1, x2) (10)

For plate/shell-like structures featuring 2D SGs, the deformed configuration can be described as

R(x1, x2, y2, y3) = Ro(x1, x2) + εy3B3(x1, x2) + εwi(x1, x2, y2, y3)Bi(x1, x2) (11)

For plate/shell-like structures featuring 3D SGs, the deformed configuration can be described as

R(x1, x2, y1, y2, y3) = Ro(x1, x2) + εy3B3(x1, x2) + εwi(x1, x2, y1, y2, y3)Bi(x1, x2) (12)

For 3D structures featuring 1D SGs, the deformed configuration can be described as

R(x1, x2, x3, y3) = Ro(x1, x2, x3) + εwi(x1, x2, x3, y3)Bi(x1, x2, x3) (13)

For 3D structures featuring 2D SGs, the deformed configuration can be described as

R(x1, x2, x3, y2, y3) = Ro(x1, x2, x3) + εwi(x1, x2, x3, y2, y3)Bi(x1, x2, x3) (14)

For 3D structures featuring 3D SGs, the deformed configuration can be described as

R(x1, x2, x3, y1, y2, y3) = Ro(x1, x2, x3) + εwi(x1, x2, x3, y1, y2, y3)Bi(x1, x2, x3) (15)

Note in Eq. (7), we actually express R in terms of Ro, Bi, and wi, which is six times redundant. Six
constraints are needed to ensure a unique mapping. These constraints are directly related with how we define
Ro and Bi in terms of R. For example, it is natural for us to define

Ro = ⟨⟨R⟩⟩ − ⟨⟨εyα⟩⟩Bα(xk) (16)

where ⟨⟨·⟩⟩ indicates average over SG. If yα is chosen such that ⟨⟨εyα⟩⟩ = 0, position vector of a material
point in the macroscopic structural model Ro is defined as the average of the position vector of the original
heterogeneous structure. This definition implies following three constraints on the fluctuating functions:

⟨⟨wi⟩⟩ = 0 (17)

The other three constraints can be used to specify Bi in a certain fashion. For 3D structures, we already
have three constraints from the definition Bk = Ro,k.

For plate/shell-like structures, we can select B3 in such a way that

B3 ·Ro,1 = 0 B3 ·Ro,2 = 0 (18)

which provides two constraints implying that we choose B3 normal to the reference surface of the deformed
plate/shell. It should be noted that this choice has nothing to do with the well-known Kirchhoff hypothesis.
In the Kirchhoff assumption, the transverse normal can only rotate rigidly without any local deformation.
However, in the present formulation, we allow all possible deformation, classifying all deformation other than
those described by Ro and Bi in terms of the fluctuating function wiBi. The last constraint can be specified
by the rotation of Bα around B3 such that

B1 ·Ro,2 = B2 ·Ro,1 (19)
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This constraint actually defines the macro strains for a plate/shell model as defined in Eq. (48) later to be
symmetric.

For beam-like structures, we can select Bα in such a way that

B2 ·Ro,1 = 0 B3 ·Ro,1 = 0 (20)

which provides two constraints implying that we choose B1 to be tangent to the reference line of deformed
beam. Note that this choice is not the well-known Euler-Bernoulli assumption as the present formulation
allows us to describe all the deformation of the cross-section. We can also prescribe the rotation of Bα

around B1 such that

B3 ·
∂R

∂x2
−B2 ·

∂R

∂x3
= 0 (21)

which implies the following constraint on the fluctuating functions⟨
⟨w2|3 − w3|2⟩

⟩
= 0 (22)

This constraint actually defines the twist angle of the macroscopic beam model in terms of the original
position vector as pointed out in Ref. [4].

Thus the fluctuating functions are constrained according to Eq. (17) for 3D structures or plate/shell-
structures, for beam structures, they are also constrained according to Eq. (22).

If the original heterogeneous structure is made of materials described using a Cauchy continuum and if
the local rotation (the real rotation of a material point of the original heterogeneous structure subtracting
the rotation needed for bringing bi to Bi) is small, it is convenient to use the Jauman-Biot-Cauchy strain
according to the decomposition of rotation tensor.11

Γij =
1

2
(Fij + Fji)− δij (23)

where δij is the Kronecker symbol and Fij is the mixed-basis component of the deformation gradient tensor
defined as

Fij = Bi ·Gag
a · bj = Bi ·

(
Gkg

k +Gαg
α
)
· bj (24)

Here ga are the 3D contravariant base vectors of the undeformed configuration and Ga are the 3D covariant
basis vectors of the deformed configuration.

The contravariant base vector ga is defined as

ga =
1

2
√
g
eaijgi × gj (25)

with eaij as the 3D permutation symbol and

gi =
∂r

∂xi
(26)

as the covariant base vector of the undeformed configuration. g is the determinant of the metric tensor of
the undeformed configuration, defined as

g = det(gi · gj) (27)

From the undeformed configuration in Eq. (2), corresponding to the remaining macro coordinate xk, we
obtain the covariant base vector as

gk =
∂r

∂xk
= bk + εyα

∂bα
∂xk

= bk + εyαkk × bα = bk + eiαjεyαkkibj (28)

Here kk = kkibi is the initial curvature vector corresponding to the remaining macro coordinate xk. This
definition is consistent with those defined for initial curvatures of shells in Ref. [12], k2Dkl , if we let

k2Dkl = αlmkkm k2Dk3 = kk3 (29)

with αlm as the 2D permutation symbol so that α11 = α22 = 0, α12 = −α21 = 1.
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From the undeformed configuration in Eq. (2), corresponding to the eliminated macro coordinate xα, we
obtain the covariant base vector as

gα =
∂r

∂xα
=
∂εyα
∂xα

bα = bα (30)

Specifically, for beam-like structures, we have

g1 = (1− εy2k13 + εy3k12)b1 − εy3k11b2 + εy2k11b3 (31)

g2 = b2 (32)

g3 = b3 (33)
√
g = 1− εy2k13 + εy3k12 (34)

g1 =
1
√
g
b1 (35)

g2 = b2 +
εy3k11√

g
b1 (36)

g3 = b3 −
εy2k11√

g
b1 (37)

For prismatic beams, k11 = k12 = k13 = 0, and gi = gi = bi.
For plate/shell-like structures, one is free to chose the lines of curvatures to be the arc-length coordinates

x1 and x2, so that k11 = k22 = 0. If such a choice is made, the covariant base vectors can be obtained in the
following simple form:

g1 = (1 + εy3k12)b1 (38)

g2 = (1− εy3k21)b2 (39)

g3 = b3 (40)
√
g = (1 + εy3k12)(1− εy3k21) (41)

g1 =
b1

1 + εy3k12
(42)

g2 =
b2

1− εy3k21
(43)

g3 = b3 (44)

For plates, k12 = k21 = 0, we have gi = gi = bi.
For 3D structures, we have gi = gi = bi according to Eq. (6).
The 3D covariant basis vectors of the deformed configuration Gi are defined as

Gi =
∂R

∂xi
(45)

From the deformed configuration in Eq. (7), corresponding to the remaining macro coordinate xk, we
obtain the covariant base vector Gk as

Gk =
∂R

∂xk
=
∂Ro

∂xk
+ εyα

∂Bα

∂xk
+ ε

∂wi

∂xk
Bi + εwi

∂Bi

∂xk
(46)

From the deformed configuration in Eq. (7), corresponding to the eliminated macro coordinate xα, we
obtain the covariant base vector as

Gα =
∂R

∂xα
=
∂(εyβ)

∂xα
Bβ + ε

∂wi

∂xα
Bi = Bα +

∂wi

∂yα
Bi (47)

A proper definition of the generalized strain measures for the macroscopic structural model is needed for
purpose of formulating our macroscopic structural analysis in an intrinsic form. Following Refs. [4, 12, 13],
we introduce the following definitions:

ϵkl = Bl ·
∂Ro

∂xk
− δkl

κki =
1

2
eiajBj ·

∂Ba

∂xk
− kki (48)
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where ϵkl is the Lagrangian stretch tensor and κki is the Lagrangian curvature strain tensor. This definition
corresponds to the kinematics of a nonlinear Cosserat continuum10 which allows six independent degrees of
freedom (three translations and three rotations) for each material point no matter whether the macroscopic
structural model is 1D, 2D, or 3D.

For beam-like structures, these definitions reproduce the 1D generalized strain measures of the Timo-
shenko beam model defined in Ref. [14]. If we restrict B1 to be tangent to Ro, Eq. (20), these definitions
reproduce the 1D generalized strain measures of the Euler-Bernoulli beam model defined in Ref. [14].

For plate/shell-like structures, if we uses Eq. (19), we will have the symmetry ϵ12 = ϵ21 as a constraint for
the kinematics of the final plate/shell model. These definitions reproduce the 2D generalized strain measures
of the Reissner-Mindlin model defined in Ref. [12]. If we further restrain B3 to be normal to the reference
surface, Eq. (18), these definitions reproduce the 2D generalized strain measures of the Kirchhoff-Love model
defined in Ref. [15].

For 3D structures, these definitions correspond to the natural strain measures defined in Ref. [13] for
non-linear Cosserat continuum. Although the SG kinematics formulated this way has the potential to
construct a Cosserat continuum model for the 3D macroscopic structural model, we will restrict ourselves
to the classical Cauchy continuum model for 3D structures in this paper. In other words, we are seeking a
symmetric Lagrangian stretch tensor ϵkl and negligible curvature strain tensor κki. This can be achieved by
constraining the global rotation needed for bringing bi to Bi in a specific way, which can be illustrated more
clearly using an invariant form of the definitions in Eq. (48). According to Ref. [13,16], these definitions can
be rewritten as

ϵ = CT · F − I

κT = −1

2
e :

(
CT · ∂C

∂xk
bk

)
(49)

where ϵ is the Lagrangian stretch tensor, κ the Lagrangian curvature strain tensor (or so-called wryness
tensor), C = Bibi is the global rotation tensor bringing bi to Bi, F is the deformation gradient tensor,
I = bibi is the second-order identity tensor, and e = −I × I is the third-order skew Ricci tensor. If
we constrain the global rotation tensor C to be that can be decomposed from F according to the polar
decomposition theorem such that

F = C ·U (50)

where U is a second-order positive symmetric tensor, then the definitions in Eq. (49) become

ϵ = CT · (C ·U)− I = U − I

κT = −1

2
e :

(
CT · ∂C

∂xk
bk

)
(51)

Clearly, the Lagrangian stretch tensor ϵ becomes symmetric and is the definition of Jauman-Biot-Cauchy
strain tensor. Lagrangian curvature strain tensor κ corresponds to higher order terms, gradient of the
deformation gradient, which is commonly neglected in a Cauchy continuum.

To facilitate the derivation of the covariant vectors Gi, we can rewrite the definitions in Eq. (48) as

∂Ro

∂xk
= Bk + ϵklBl

∂Bi

∂xk
= (κkj + kkj)Bj ×Bi (52)

Note ϵ13 = ϵ23 = 0 for plate/shell-like structures due to Eq. (18) and ϵ12 = ϵ13 = 0 for beam-like structures
due to Eq. (20).

Substituting Eq. (52) into Eq. (46), we can obtain more detailed expressions for the covariant base vectors
of the deformed configuration Gk as follows:

Gk = Bk + ϵklBl + εyα
∂Bα

∂xk
+ ε

∂wl

∂xk
Bl + ε

∂wα

∂xk
Bα + εwl

∂Bl

∂xk
+ εwα

∂Bα

∂xk

=

(
δkl + ϵkl + ε

∂wl

∂xk

)
Bl + ε (yα + wα)

∂Bα

∂xk
+ ε

∂wα

∂xk
Bα + εwl

∂Bl

∂xk

=

(
δkl + ϵkl + ε

∂wl

∂xk

)
Bl + ε

[
eijα (yα + wα) (κkj + kkj) +

∂wα

∂xk
δαi + eijlwl(κkj + kkj)

]
Bi

(53)
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Note in this expressions for Gk, according to Eq. (1), we have

ε
∂wi(xk, yj)

∂xk
= ε

∂wi(xk, yj)

∂xk
|yj=const +

∂wi(xk, yj)

∂yk
|xk=const ≡ εwi,k + wi|k (54)

Now, we are ready to write out the explicit expressions of Gi for beam-like structures, plate/shell-like
structures, or 3D structures.

For beam-like structures, we have

G1 =

[
1 + ϵ11 + ε

∂w1

∂x1
− ε(y2 + w2)(κ13 + k13) + ε(y3 + w3)(κ12 + k12)

]
B1

+ ε

[
∂w2

∂x1
− (y3 + w3)(κ11 + k11) + w1(κ13 + k13)

]
B2

+ ε

[
∂w3

∂x1
+ (y2 + w2)(κ11 + k11)− w1(κ12 + k12)

]
B3

(55)

G2 =
∂w1

∂y2
B1 +

(
1 +

∂w2

∂y2

)
B2 +

∂w3

∂y2
B3 (56)

G3 =
∂w1

∂y3
B1 +

∂w2

∂y3
B2 +

(
1 +

∂w3

∂y3

)
B3 (57)

For plate/shell-like structures, we have

G1 =

[
1 + ϵ11 + ε

∂w1

∂x1
+ ε(y3 + w3)(κ12 + k12)− εw2(κ13 + k13)

]
B1

+

[
ϵ12 + ε

∂w2

∂x1
− ε(y3 + w3)κ11 + εw1(κ13 + k13)

]
B2

+ ε

[
∂w3

∂x1
− w1(κ12 + k12) + w2κ11

]
B3

(58)

G2 =

[
ϵ21 + ε

∂w1

∂x2
+ ε(y3 + w3)κ22 − εw2(κ23 + k23)

]
B1

+

[
1 + ϵ22 + ε

∂w2

∂x2
− ε(y3 + w3)(κ21 + k21) + εw1(κ23 + k23)

]
B2

+ ε

[
∂w3

∂x2
− w1κ22 + w2(κ21 + k21)

]
B3

(59)

G3 =
∂w1

∂y3
B1 +

∂w2

∂y3
B2 +

(
1 +

∂w3

∂y3

)
B3 (60)

For 3D structures, we have

Gk =

(
δki + ϵki + ε

∂wi

∂xk

)
Bi (61)

Note for 3D structures, we are focusing on a Cauchy continuum, thus the initial curvatures vanish and
curvature strain tensors are higher order terms and thus neglected.

Using the expressions for ga and Ga, and dropping nonlinear terms due to the product of the curvature
strains and the fluctuating functions, the 3D strain field defined in Eq. (23) can be written in the following
matrix form

Γ = Γhw + Γϵϵ̄+ εΓlw + εΓRw (62)

where Γ = ⌊Γ11 Γ22 Γ33 2Γ23 2Γ13 2Γ12⌋T , w = ⌊w1 w2 w3⌋T , ϵ̄ is a column matrix containing the
generalized strain measures for the macroscopic structural model. For example, if the macroscopic structural
model is a beam model we have ϵ̄ = ⌊ϵ11 κ11 κ12 κ13⌋T with ϵ11 denoting the extensional strain and κ11
the twist, κ12 and κ13 the bending curvatures. If the macroscopic structural model is a plate/shell model we
have ϵ̄ = ⌊ϵ11 2ϵ12 ϵ22 κ11 κ12 + κ21 κ22⌋T with ϵαβ denoting the in-plane strains and καβ denoting the
curvature strains. To be consistent with our previous work on plate/shell modeling,12 the curvature strains
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are defined according to Eq. (29). If the macroscopic structural model is a 3D continuum model we have
ϵ̄ = ⌊ϵ11 ϵ22 ϵ33 2ϵ23 2ϵ13 2ϵ12⌋T with ϵij denoting the Biot strain measures in a Cauchy continuum.

Γh is an operator matrix which depends on the dimensionality of the SG. If the SG is 3D, we have

Γh =



1√
g1

∂
∂y1

0 0

0 1√
g2

∂
∂y2

0

0 0 ∂
∂y3

0 ∂
∂y3

1√
g2

∂
∂y2

∂
∂y3

0 1√
g1

∂
∂y1

1√
g2

∂
∂y2

1√
g1

∂
∂y1

0


(63)

where
√
g1 =

√
g2 = 1 for plate-like structures or 3D structures,

√
g1 = 1− εy2k13 + εy3k12 and

√
g2 = 1 for

beam-like structures,
√
g1 = 1 + εy3k12 and

√
g2 = 1− εy3k21 for shell-like structures.

If the SG is a lower-dimensional one, one just needs to vanish the corresponding term corresponding to
the micro coordinates which are not used in describing the SG. For example, if the SG is 2D, we have

Γh =



0 0 0

0 1√
g2

∂
∂y2

0

0 0 ∂
∂y3

0 ∂
∂y3

1√
g2

∂
∂y2

∂
∂y3

0 0
1√
g2

∂
∂y2

0 0


(64)

If the SG is 1D, we have

Γh =



0 0 0

0 0 0

0 0 ∂
∂y3

0 ∂
∂y3

0
∂

∂y3
0 0

0 0 0


(65)

Γϵ is an operator matrix the form of which depends on the macroscopic structural model. If the macro-
scopic structural model is the 3D Cauchy continuum model, Γϵ is the 6× 6 identity matrix.

If the macroscopic structural model is a beam model, we have

Γϵ =
1

√
g1



1 0 εy3 −εy2
0 0 0 0

0 0 0 0

0 0 0 0

0 εy2 0 0

0 −εy3 0 0


(66)

If the macroscopic structural model is a plate/shell model, we have

Γϵ =



1√
g1

0 0 εy3√
g1

0 0

0 0 1√
g2

0 0 εy3√
g2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1
2

(
1√
g1

+ 1√
g2

)
0 0 1

2

(
εy3√
g1

+ εy3√
g2

)
0


(67)
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Note the above expression is obtained with the understanding that the difference between κ12 and κ21 is of
higher order and negligible if we are not seeking a higher-order approximation of the initial curvatures.

Γl is an operator matrix the form of which depends on the macroscopic structural model. If the macro-
scopic structural model is 3D, Γl has the same form as Γh in Eq. (68) with ∂

∂yk
replaced with ∂

∂xk
, that

is

Γl =



1√
g1

∂
∂x1

0 0

0 1√
g2

∂
∂x2

0

0 0 ∂
∂x3

0 ∂
∂x3

1√
g2

∂
∂x2

∂
∂x3

0 1√
g1

∂
∂x1

1√
g2

∂
∂x2

1√
g1

∂
∂x1

0


(68)

Of course for 3D structures, we have
√
g1 =

√
g2 = 1.

If the macroscopic structural model is a lower-dimensional one, one just needs to vanish the corresponding
term corresponding to the macro coordinates which are not used in describing the macroscopic structural
model. For example, if the macroscopic structural model is a 2D plate/shell model, we have

Γl =



1√
g1

∂
∂x1

0 0

0 1√
g2

∂
∂x2

0

0 0 0

0 0 1√
g2

∂
∂x2

0 0 1√
g1

∂
∂x1

1√
g2

∂
∂x2

1√
g1

∂
∂x1

0


(69)

If the macroscopic structural model is the 1D beam model, we have

Γl =



1√
g1

∂
∂x1

0 0

0 0 0

0 0 0

0 0 0

0 0 1√
g1

∂
∂x1

0 1√
g1

∂
∂x1

0


(70)

ΓR is an operator matrix existing only for those heterogeneous structures featuring initial curvatures. For
prismatic beams, plates or 3D structures, ΓR vanishes. For those structures having initial curvatures such
as initially twisted/curved beams or shells, the form of ΓR depends on the macroscopic structural model. If
the macroscopic structural model is a 1D beam model,

ΓR =
1

√
g1



k11

(
y3

∂
∂y2

− y2
∂

∂y3

)
−k13 k12

0 0 0

0 0 0

0 0 0

−k12 k11 k11

(
y3

∂
∂y2

− y2
∂

∂y3

)
k13 k11

(
y3

∂
∂y2

− y2
∂

∂y3

)
−k11


(71)
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If the macroscopic structural model is a 2D shell model,

ΓR =



0 −k13√
g1

k12√
g1

k23√
g2

0 −k21√
g2

0 0 0

0 k21√
g2

0
−k12√

g1
0 0

k13√
g1

− k23√
g2

0


(72)

B. Variational Statement for SG

Although the SG concept can be used to analyze various type of behavior of heterogeneous structures, we are
instead focusing on the elastostatic behavior of the original heterogeneous structure for illustrative purpose
in this paper, which is governed by the following variational statement

δU = δW (73)

δ is the usual Lagrangean variation, U is the strain energy and δW is the virtual work of applied loads. The
bars over variations are used to indicate that the virtual quantity needs not be the variation of a functional.
For a linear elastic material characterized using a 6× 6 stiffness matrix D, the strain energy can be written
as

U =
1

2

∫
1

ω

⟨
ΓTDΓ

⟩
dΩ (74)

where Ω is the volume of the domain spanned by xk remaining in the macroscopic structural model. The
notation ⟨•⟩ =

∫
•√gdω is used to denote a weighted integration over the domain of the SG, ω, where g

is the determinant of the metric tensor of the undeformed configuration spanned by x1, x2, x3, as defined
previously. ω also denotes the volume of the domain spanned by yk corresponding to the coordinates xk
remaining in the macroscopic structural model. If none of yk are needed in the SG, then ω = 1. For
example, if a heterogeneous beam-like structure features a 3D SG, ω is the length of the SG in the y1
direction, corresponding to x1 remaining in the macroscopic beam model. If the heterogeneous beam-like
structure features a 2D SG (uniform cross-section), y1 is not needed for the SG and ω = 1. If a heterogeneous
plate/shell-like structure features a 3D SG, ω is the area of the SG in the y1 − y2 plane, corresponding to
x1 and x2 remaining in the macroscopic plate/shell model. If the heterogeneous plate/shell-like structure
features a 2D SG, y2 and y3 are needed for the SG and ω is equal to the length of SG in y2 direction. If the
heterogeneous plate/shell-like structure features a 1D SG, only y3 is needed for the SG and ω = 1. If a 3D
heterogeneous structure features a 3D SG, ω is the physical volume of SG spanned by y1, y2, and y3. If a 3D
heterogeneous structure features a 2D SG, ω is the area of SG spanned by y2 and y3. If a 3D heterogeneous
structure features a 1D SG, ω is the length of SG in y3 direction.

For a Cauchy continuum, there may exist applied loads from tractions and body forces. The virtual work
done by these applied loads can be calculated as

δW =

∫
1

ω

(
⟨p · δR⟩+

∫
s

Q · δR
√
cds

)
dΩ (75)

where s denotes the boundary surfaces of the SG where the traction force per unit area Q = QiBi is applied
and p = piBi denotes the applied body force per unit undeformed volume.

√
c is equal to 1 except for some

degenerated cases where s is only a boundary curve of the SG and one of coordinates xk is required to form
the physical surfaces on which the load is applied. In this case, the differential area of the physical surface
is equal to

√
cdsdxk with ds as the differential arc length along the boundary curve of SG. For example

for beam-like structures featuring a 2D SG, the SG boundary is the curve encircling the cross-section, and
√
c =

√
g +

(
y2

dy2

ds + y3
dy3

ds

)2

k211. δR is the Lagrangian variation of the displacement field in Eq. (7), such

that
δR = δqiBi + εyαδBα + εδwiBi + εwiδBi (76)
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We may safely ignore products of the fluctuating function and virtual rotation in δR, because the fluctuating
functions are small. The last term of the above equation is then dropped so that

δR = δqiBi + εyαδBα + εδwiBi (77)

The virtual displacements and rotations of the macroscopic structural model are defined as

δqi = δRo ·Bi δBα = δψjBj ×Bα (78)

where δqi and δψi contain the components of the virtual displacement and rotation in the Bi system,
respectively. They are functions of xk only. Note δψj are restrained to be derivable from δqi and are higher
order terms neglected in a 3D structure described using the Cauchy continuum.

Then we can rewrite Eq. (77) as

δR =
(
δqi + εejαiyαδψj + εδwi

)
Bi (79)

Finally, we express the virtual work due to applied loads as

δW = δWH + ε δW
∗

(80)

where δWH is the virtual work not related with the fluctuating functions wi and δW
∗
is the virtual work

related with the fluctuating functions. Specifically, they are

δWH =

∫ (
fiδqi +miδψi

)
dΩ δW

∗
=

∫
1

ω

(
⟨piδwi⟩+

∮
Qiδwi

√
c ds

)
dΩ (81)

with the generalized forces fi and moments mi defined as

fi =
1

ω

(
⟨pi⟩+

∫
Qi

√
c ds

)
mi =

eiαj
ω

(
⟨εyαpj⟩+

∫
εyαQj

√
c ds

)
(82)

If we assume that pi and Qi are independent of the fluctuating functions, then we can rewrite δW
∗
as

δW
∗
= δ

∫
1

ω

(
⟨piwi⟩+

∫
Qiwi

√
c ds

)
dΩ (83)

In view of the strain energy in Eq. (74) and virtual work in Eq. (80) along with Eq. (81), the variational
statement in Eq. (73) can be rewritten as∫

1

ω
δ

[
1

2

⟨
ΓTDΓ

⟩
− ε

(
⟨piwi⟩ −

∫
Qiwi

√
c ds

)]
−
(
fiδqi +miδψi

)
dΩ = 0 (84)

If we attempt to solve this variational statement directly, we will meet the same difficulty as solving the
original problem of heterogeneous structures. The main complexity comes from the fluctuating functions wi

which are unknown functions of both micro and macro coordinates. The common practice in the literature is
to assume the fluctuating functions, a priori, in terms of some unknown functions (displacements, rotations,
and/or strains) of xk and some known functions of yk, to straightforwardly reduce the original continuum
model into a macroscopic structural model. However, for arbitrary heterogeneous structures made with
general composites, the imposition of such ad hoc assumptions may introduce significant errors. Fortunately,
variational asymptotic method (VAM)17 provides a useful technique to obtain the fluctuating functions
through an asymptotical analysis of the variational statement in Eq. (84) in terms of the small parameter ε
inherent in the heterogeneous structure to construct asymptotically correct macroscopic structural models.
As the last two terms in Eq. (84) are not functions of wi, we can conclude that the fluctuating function is
governed by the following variational statement instead:

δ

[
1

2

⟨
ΓTDΓ

⟩
− ε

(
⟨piwi⟩ −

∫
Qiwi

√
c ds

)]
= 0 (85)

which can be considered as a variational statement for the SG as it is posed over the SG domain only.
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According to VAM, we can neglect the terms in the order of ε to construct the first approximation of the
variational statement in Eq. (85) as

δ
1

2

⟨
(Γhw + Γϵϵ̄)

TD(Γhw + Γϵϵ̄)
⟩
= 0 (86)

For very simple cases, this variational statement can be solved analytically, while for general cases we need
to turn to numerical techniques such as the finite element method for solution. To this end, we need to
express w using shape functions defined over SG as

w(xk, yj) = S(yj)V (xk) (87)

where S represents the shape functions and V a column matrix of the nodal values of the fluctuating
functions.

Substituting Eq. (87) into Eq. (86), we obtain the the following discretized version of the strain energy
functional:

U =
1

2

(
V TEV + 2V TDhϵϵ̄+ ϵ̄TDϵϵϵ̄

)
(88)

where
E =

⟨
(ΓhS)

T
D (ΓhS)

⟩
Dhϵ =

⟨
(ΓhS)

T
DΓϵ

⟩
Dϵϵ =

⟨
ΓT
ϵ DΓϵ

⟩
(89)

Minimizing U in Eq. (88) subject to the constraints, gives us the following linear system

EV = −Dhϵϵ̄ (90)

It is clear that V will linearly depend on ϵ̄, and the solution can be symbolically written as

V = V0ϵ̄ (91)

Substituting Eq. (91) back into Eq. (88), we can calculate the strain energy storing in the SG as the first
approximation as

U =
1

2
ϵ̄T

(
V T
0 Dhϵ +Dϵϵ

)
ϵ̄ ≡ ω

2
ϵ̄T D̄ϵ̄ (92)

where D̄ is the effective stiffness to be used in the macroscopic structural model.
Substituting the solved strain energy stored in the SG into Eq. (84), we can rewrite the variational

statement governing the original heterogeneous structures as∫ [
δ

(
1

2
ϵ̄T D̄ϵ̄

)
− fiδqi −miδψi

]
dΩ = 0 (93)

This variational statement governs the macroscopic structural model as it involves only fields which are
unknown functions of macro coordinates xk. The first term is the variation of the strain energy of the
macroscopic structural model and the last terms are the virtual work done by generalized forces and moments.
This variational statement governs the C1 structural elements and 3D solid elements implemented in most
commercial FEA software packages.

We are not only interested in obtaining the effective stiffness and macroscopic structural behavior. We
are also interested in obtaining the local fields within the original heterogeneous structure. First knowing ϵ̄,
we can compute the fluctuating function as

w = SV0ϵ̄ (94)

The local displacement field can be obtained as

ui = ūi + εyα(Cαi − δαi) + εwjCji (95)

where ui is the local displacement, ūi is the macroscopic displacement.
The local strain field can be obtained as

Γ = (ΓhSV0 + Γϵ) ϵ̄. (96)

The local stress field can be obtained directly using the Hooke’s law as

σ = DΓ. (97)
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IV. Numerical Examples

The Mechanics of Structure Genome developed in this paper is implemented into a computer code
called SwiftCompTM using the modern Fortran language. Although still in its early development stage,
SwiftCompTM has demonstrated a great potential for multiscale constitutive modeling of composites as it
represents a unique unified approach for modeling composites structures and materials. A few examples
are used here to demonstrate the application and validity of the Mechanics of Structure Genome and the
companion code SwiftCompTM. As it can be theoretically shown that one can specialize the Mechanics of
Structure Genome to reproduce the theories the author and his co-workers have developed over the years
for composite beams (Variational Asymptotic Beam Sectional analysis (VABS)), composite plates/shells
(Variational Asymptotic Plate And Shell analysis (VAPAS)), and micromechanics (Variational Asymptotic
Method for Unit Cell Homogenization (VAMUCH)). We have verified that SwiftCompTM can reproduce all
the results of VAMUCH, and the classical models of VABS and VAPAS. Here, we just study a few examples
which have been studied before in our previous publication to demonstrate the application of SwiftCompTM.

 

2
, y

 

3
,y

Figure 6. Structure genome for sandwich beam with various cross-sections

A. Sandwich Beam with Periodically Variable Cross-Section

The first example is to analyze a sandwich beam with periodically variable cross-section studied in Ref. [18].
The geometric parameters for each configuration are given below:

• For the sandwich beam with square holes, the geometric variables are given by b = d = 1.5 m, t = 0.1
m, a = 1 m (Figure 6 : top-left)

• For the sandwich beam with circular holes, the geometric variables are given by b = d = 1.5 m, t = 0.1
m, r = 0.5614 m (Figure 6 : top-right)

• For the sandwich beam with cross holes, the geometric variables are given by b = d = 1.5 m, t = 0.1
m, e = 0.7071 m (Figure 6 : bottom-left)
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• For the sandwich beam with hexagonal holes, the geometric variables are given by b = 1.23745 m,
d = 2b, t = 0.1 m, a = 0.7887 m, e = 0.6431 m (Figure 6 : bottom-right)

Note although all the SG in Figure 6 are uniform along y2, the SG must be 3D as they are used to form a
beam structure and y2 is one of the cross-section domain which is finite, see Figure 7. All sandwich beams
in the above cases have the same core material properties (material indicated by blue color in the figure)
of Ec = 3.5 GPa, νc = 0.34 and face sheet material properties (indicated by purple color in the figure) of
Ef = 70 GPa, νc = 0.34. Note although these beams are studied in [19], only bending stiffness is given. In
fact, the effective stiffness for the classical beam model in general should be represented by a fully populated
4×4 matrix. The effective bending stiffnesses predicted by the analytical formulas in [19] and SwiftCompTM

are listed in Table 1.

Table 1. Effective beam bending stiffness of sandwich beams predicted by different methods (×1010 N.m2)

Ref. [19] SwiftCompTM

Rectangle Holes 5.669 5.576

Circular Holes 5.176 5.537

Cross Holes 5.486 5.805

Hexagon Holes 2.875 2.888

As can be observed, SwiftCompTM predictions are slightly different from those in [19]. However, the
present approach is more versatile than that in [19] because [19] only provides analytic formulas for bending
stiffness of beams made of materials characterized only by one material constant, the Young’s modulus,
while SwiftCompTM can estimate all the engineering beam constants represented by a 4× 4 stiffness matrix,
possibly fully populated, for the most general anisotropic materials by factorizing the coefficient material in
the linear system, Eq. (90), only once.

Figure 7. A sandwich beam with hexagonal holes

B. Sandwich Panel with a Corrugated Core

The second example is to model a corrugated-core sandwich panel, a concept used for Integrated Thermal
Protection System (ITPS) studied in [20, 21]. The ITPS panel along with the details of the SG is sketched
in Figure 8. The geometry parameters are tT = 1.2 mm, tB = 7.49 mm, tW = 1.63 mm, p = 25 mm,
d = 70 mm, and θ = 85◦. Both materials are isotropic with E1 = 109.36 GPa, ν1 = 0.3, E2 = 209.482
GPa, ν2 = 0.063. Although 3D unit cells are needed for the study in [20], only a 2D SG is necessary for
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SwiftCompTM as it is uniform along one of the in-plane directions. The effective stiffness for the classical
plate model can be represented using A, B and D matrices known in classical lamination theory. Results
obtained in Ref. [20] are compared with SwiftCompTMin Tables 2, 3 and 4. SwiftCompTM predictions agree
very well with those in Ref. [20] with the biggest difference (around 1%) appearing for the extension-bending
coupling stiffness (B11). However, the present approach is much more efficient because using the approach
in [20] one needs to carry out six analyses of a 3D unit cell under six different sets of boundary conditions
and load conditions and postprocess the 3D stresses to compute the plate stress resultants, while using the
present approach, one only needs to carry out one analysis of a 2D SG without any postprocessing.

Material 1

Material 2

θ

d

Tt

Wt

2p

Bt

Material 1

Material 2

θ

d

Tt

Wt

2p

Bt

Figure 8. Sketch of the ITPS panel and its SG

Table 2. Effective extension stiffness of ITPS (×109 N/m)

A11 A13 A22 A33

Ref. [20] 2.83 0.18 1.07 2.33

SwiftCompTM 2.80 0.18 1.08 2.33

Table 3. Effective bending stiffness of ITPS (×106 N.m)

D11 D13 D22 D33

Ref. [20] 3.06 0.22 1.32 2.85

SwiftCompTM 3.03 0.22 1.32 2.87

V. Conclusion

This paper introduces the concept of structure genome (SG) to bridge materials genome and structural
analysis. SG facilitates a mathematical decoupling of the original complex analysis of composite structures
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Table 4. Effective coupling stiffness of ITPS (×106 N)

B11 B13 B22 B33

Ref. [20] -71.45 -3.36 -34.05 -71.45

SwiftCompTM -70.67 -3.31 -34.06 -71.42

into a constitutive modeling over SG and a macroscopic structural analysis. The constitutive modeling will
not only perform homogenization to obtain the constitutive relations for the macroscopic structural analysis
but also perform dehomogenization to obtain the local fields within the microstructure. This paper not only
formulated the mechanics of structure genome but also implemented the theory in a computer code called
SwiftCompTM. Mechanics of SG presented in this paper enables a multiscale constitutive modeling approach
with the following unique features:

• Use SG to fill the gap between materials genome and structural analysis. Intellectually, SG enables
us to view structural mechanics as an application of micromechanics. Technically, SG empowers us to
systematically model complex buildup structures with heterogeneities of a length scale comparable to
the smallest structural dimension.

• Use VAM to avoid apriori assumptions commonly invoked in other approaches, providing the most
mathematical rigor and the best engineering generality.

• Decouple the original problem into two sets of analyses: a constitutive modeling and a structural
analysis. This allows the structural analysis to be formulated exactly as a general (1D, 2D, or 3D)
continuum, the analysis of which is readily available in commercial FEA software packages and confines
all approximations to the constitutive modeling, the accuracy of which is guaranteed to be the best by
VAM.

A general-purpose computer code called SwiftCompTM is developed to implement the Mechanics of Structure
Genome along with several examples to demonstrate its application and power.
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