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Abstract

Multilayered composites are widespread in load-bearing structures of the aeronautical and wind
energy industries. Increasingly, advanced composites are spreading into the mass-market au-
tomotive sector, where the lightweight advantages of composites improve structural efficiencies
and thereby enable a new generation of electric cars.

Composite laminates are mostly employed in thin-walled semi-monocoque structures as the
manufacturing processes, such as pre-preg curing and resin infusion, are amenable to this type
of construction. However, their imminent diversification to new applications will benefit from
extending the range of possible laminate configurations in terms of layer material properties,
stacking sequences and laminate thicknesses, as well as the nature of service loading.

Such a diversification can add significant complexity when, for example, the layer material
properties differ by multiple orders of magnitude or when the composite comprises of relatively
thick cross-sections. In case of the former, the structural response is non-intuitive and cannot
be modelled adequately using classical lamination theory. The latter adds non-classical effects
due to transverse shearing and transverse normal stresses, which are particularly pernicious due
to the lack of reinforcing material in the stacking direction and can lead to the delamination of
layers.

Reliable design of these multilayered structures requires tools for accurate stress analysis
that account for these non-classical higher-order effects. Despite offering high fidelity, three-
dimensional (3D) finite element models are prohibitive for iterative design studies due to their
high computational expense. Consequently, a large number of approximate higher-order two-
dimensional (2D) theories have been formulated over the last decades, with the aim of predicting
accurate 3D stress fields while maintaining superior computational efficiency. The majority of
these formulations have focused on purely displacement-based approaches that typically require
post-processing steps to recover accurate transverse stresses.

The work presented here uses the Hellinger-Reissner mixed-variational principle to derive
a higher-order 2D equivalent single-layer formulation that predicts variationally consistent 3D
stress fields in laminated beams and plates with 3D heterogeneity, i.e. laminates comprised
of layers with material properties that differ by multiple orders of magnitude and that also
vary continuously in-plane. The formulation is shown to be accurate to within a few percent
of 3D elasticity and 3D finite element solutions. A novelty of the present approach is that
the computational expense is reduced by basing all stress fields on the same set of unknowns.
Furthermore, by enforcing Cauchy’s equilibrium equations in the variational statement via La-
grange multipliers, and then solving the ensuing governing equations in the strong form using
spectral methods, boundary layers in the 3D stress fields are captured robustly.

The present formulation is then used to ascertain the relative effects of transverse shear,
transverse normal and zig-zag deformations. By studying non-traditional materials and stacking
sequences with pronounced transverse anisotropy, the results presented herein provide physical
insight into the governing factors that drive non-classical effects, with the aim of aiding the
intuition of structural engineers in preliminary design stages. Finally, to showcase a possible
application, the model is applied in an optimisation study that tailors the through-thickness
stress fields in a beam in order to reduce the likelihood of delaminations. In the author’s opinion,
the general formulation presented herein is well-suited for accurate and computationally efficient
stress analysis in industrial applications.
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To Mom and Dad

Meine Arbeit in Eurer Handschrift

“Sie sind so jung, so vor allem Anfang, und ich möchte Sie, so gut ich es kann,
bitten, lieber Herr, Geduld zu haben gegen alles Ungelöste in Ihrem Herzen und zu
versuchen, die Fragen selbst liebzuhaben wie verschlossene Stuben und wie Bücher,

die in einer sehr fremden Sprache geschrieben sind. Forschen Sie jetzt nicht nach den
Antworten, die Ihnen nicht gegeben werden können, weil Sie sie nicht leben könnten.
Und es handelt sich darum, alles zu leben. Leben Sie jetzt die Fragen. Vielleicht leben
Sie dann allmählich, ohne es zu merken, eines fernen Tages in die Antwort hinein.”

– Rainer Maria Rilke, Briefe an Einen Jungen Poeten

“You are so young, so much before all beginning, and I would like to beg you, dear
Sir, as well as I can, to have patience with everything unresolved in your heart and to
try to love the questions themselves as if they were locked rooms or books written in a
very foreign language. Don’t search for the answers, which could not be given to you
now, because you would not be able to live them. And the point is, to live everything.
Live the questions now. Perhaps then, someday far in the future, you will gradually,

without even noticing it, live your way into the answer.”
– Rainer Maria Rilke, Letters to a Young Poet
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Chapter 1

Introduction

1.1 Background

The use of multilayered composites in load-bearing structures, particularly in the aeronautical,

marine and renewable energy industries is on the rise. In fact, in any engineering structure that

features heavy moving machinery, be it an aircraft, sea-faring vessel or turbine blade, structural

mass is a primary design driver. Oftentimes, the benefits of saving weight are not linear but

lead to beneficial second-order effects.

On an aircraft, for example, every gram saved in the structure of the wings and fuselage

can be replaced by more payload, and hence, increases revenue for the operating airline. Alter-

natively, the aircraft can be flown at reduced weight, which means the propulsive system can

accelerate the aircraft to the same velocity at lower power output, i.e. at improved fuel effi-

ciency. In the ideal scenario shedding structural mass induces a beneficial feedback loop. First,

lighter aircraft require smaller engines to achieve the same cruising speed and smaller wings

to keep the aircraft aloft. In turn, smaller engines and a more compact aircraft are naturally

lighter and also reduce drag, thereby further reducing the engine power output requirements.

What prevents this virtuous cycle from repeating ad infinitum is the economic goal of the

operating airline to turn over a profit. From the perspective of the airline, the ultimate goal

is not to fly the lightest or smallest aircraft but to make money for the shareholders of the

company. In this respect, economies of scale play a big role on the bottom line, such that bigger

aircraft are preferred to smaller ones. The greater the payload and passengers the aircraft can

carry, the greater the revenue for the airline and the smaller the operating costs per passenger.

Additionally, structural mass saved can be replaced by comfort or luxury items, such as private

cabins, reclining seats and entertainment systems, that warrant higher prices and improved

gross margins on sales. Finally, legislative goals by the European Commission to reduce CO2

emissions by 75% per passenger kilometre, and to eliminate taxiing emissions completely by

2050, pose serious threats in terms of financial penalties [1].

Thus, from the perspective of the operating airline, savings in aircraft dry mass lead to a

trifecta of benefits to the bottom line: an increase in revenue, a reduction in operating costs

per passenger, and an improvement in fuel efficiency. As a result, original equipment manu-

facturers, such as Airbus, Boeing, Bombardier and Embraer, are incentivised to design more

efficient aircraft. Due to the higher specific strength (strength/density) and specific stiffness

(stiffness/density) of advanced fibre-reinforced plastics compared to standard metallic aerospace

materials, advanced composites are finding increasing application in primary aircraft structures.

Most recently, Boeing replaced the 767-type aircraft with the 787 Dreamliner, the first commer-

cial airplane with a composite fuselage and composite wings, resulting in an overall composite

usage of 50% by weight [2]. In early 2015, Airbus shipped its competitor aircraft, the A350

1



1.1. Background

‘85 ‘90 ‘95 ‘00 ‘05 ‘10

ø 126 m
5 MW

?

ø 250 m
10 MW

Year

R
ot

or
 d

ia
m

et
er

 ø
 (m

)

ø 15 m
0.05 MW

ø 40 m
0.4 MW

ø 60 m
1.3 MW

ø 80 m
2 MW

ø 160 m
7.5 MW

Figure 1.1: A progression of wind turbine rotor sizes and power output ratings from 1985-
2010. Data reproduced from the 2011 UpWind research report [3]. All drawings
are not to scale.

XWB, made primarily from carbon fibre-reinforced plastics.

Similarly, other industries are taking advantage of the high specific strength and stiffness of

composites in lightweight design. BMW’s i3 urban electric car is the first mass production vehi-

cle to predominantly use carbon fibre-reinforced plastics for the internal structure. Although the

lightweight structural properties of composites have been employed in high-performance racing

cars for more than two decades, the use of carbon fibre composites in large-scale automotive

applications is expected to grow considerably in the coming years [4].

The notion of an impending world energy crisis, with threats of peak oil and global warming,

have increased demand for renewable energy sources, such as wind power. In the last 25-30 years

the use of wind turbines for electricity generation has grown from a grass-root green initiative to

a financially sustainable primary energy resource [5]. The increasing maturity of the industry

can be traced from the small 50-150 kW turbines constructed throughout the 1980s to the

large 2-5 MW projects installed both on- and offshore today (see Figure 1.1). This growth can

largely be attributed to innovations in the integration of lightweight fibre-reinforced plastics as

the high specific stiffness of these materials limits tip deflections, reduces gravity-induced loading

and decreases rotor inertia. Furthermore, the excellent fatigue resistance of composites helps

to minimise material degradation and maintenance costs over the 20-year design lifespan [6].

As governmental subsidies run out, the long-term economic sustainability of wind technology

depends on increasing the energy capture efficiency, which is primarily driven by the swept

area of the turbine and therefore the turbine blade lengths. It has been shown statistically

that the weight of a turbine blade scales proportional to the cubic of the blade length [7],

such that gravity-induced bending moments vary with the fourth power of the blade length.

Thus, achieving the goals of a 20 MW turbine with 100 m long blades, as outlined in the
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2011 UpWind research report [3], requires further innovations in terms of lightweight structural

design on multiple fronts.

In high-performance applications, multiple layers of advanced fibre-reinforced plastics are

typically laminated into a multilayered assembly. By rotating the fibre orientation of indi-

vidual layers within a laminate, the engineer is endowed with enhanced design freedom to

tailor the structural behaviour on a micro- and macromechanical level. By creating bal-

anced/unbalanced and symmetric/non-symmetric laminations, for example, the designer can

exploit anisotropic coupling effects between different orthogonal deformation modes that are

impossible with isotropic structures.

The ability to discretely build up the thickness of a laminate while tailoring the material

properties of individual layers, extends the lightweight benefits of composites from the material

to the structural level. In fact, as multiple layers of dry fibre mats can be prearranged in a

mould and injected with liquid resin, the distinction between the creation of the fibre-reinforced

material and laminated structure is blurred. Automated manufacturing processes, such as tow-

steering, now allow the fibre orientation to be controlled continuously within the plane to create

so-called variable-stiffness laminates. In combination with three-dimensional (3D) printing tech-

niques, modern manufacturing techniques are slowly converging to the bottom-up construction

used by nature. Thus, material is grown or deposited at smaller length scales and then assembled

to form subsequent structural units on an incrementally greater length scale. In this manner,

stiffness and strength can be allocated and removed pro re nata, and facilitate the combination

of the materials with different functional properties. Hence, the multilayered, multimaterial

composites of the future pave the way for more optimised, multifunctional structures.

1.2 Research motivation and objectives

Within the traditional applications of the aerospace and high-performance automobile indus-

tries, composite laminates are typically employed in thin-walled semi-monocoque structures.

However, with the diversification of laminated composites to primary load-bearing structures

in novel applications, the range of possible laminate configurations in terms of layer material

properties, stacking sequences and overall laminate thicknesses, as well as the nature of service

loading, is likely to extend simultaneously.

For example, laminated safety glass that remains intact when shattered is not only applied

for ballistic protection in cars but increasingly used as a structural material in modern office

buildings. In these laminates, layers of stiff and brittle glass are joined by soft and ductile

interlayers of polyvinyl butyral or ethylene-vinyl acetate. As the material properties of glass

and interlayer can differ by multiple orders of magnitude, the structural response to external

stimuli is non-intuitive and not accurately captured using classical lamination theory.

Furthermore, the use of composite laminates in regions that require thicker cross-sections,

such as wind turbine blade roots, is increasing as well, and these thicker aspect ratios are known

to induce non-classical effects (see Figure 1.2) from significant transverse shearing and transverse

normal deformations. In laminated composites, these transverse effects are exacerbated by a

the lack of stiff reinforcing material in the stacking direction. These transverse stresses require
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Figure 1.2: A hierarchy of non-classical effects relevant to multilayered composite structures.
The chart highlights the four classes of non-classical effects investigated herein,
and identifies their driving factors and influence on the structural behaviour.

particular attention as they are major drivers of common failure modes in laminated structures,

such as delamination and debonding of layers.

Consider Figure 1.2 which highlights the four major non-classical effects relevant to multilay-

ered composite structures studied in this work. Transverse shearing of the cross-section reduces

the bending stiffness of a laminate, and also leads to higher-order distortions of the cross-section

that channel stresses towards the surfaces. Similarly, transverse normal deformation results in

changes in laminate thickness, which is particularly pernicious for sandwich laminates with

soft cores. The zig-zag effect is a phenomenon that only arises in multilayered structures with

discrete layerwise changes in transverse shear and transverse normal moduli, and results in

non-intuitive internal load redistributions. Finally, localised boundary layers towards clamped

edges and free surfaces exacerbate all three of the previously mentioned effects, and similar

stress gradients can be induced remote from boundaries using variable-stiffness composites.

Thus, the reliable design of multilayered structures requires tools for accurate stress predic-

tions that account for these non-classical effects. Currently, the standard approach in industry is

to use 3D finite element models to predict accurate 3D stress fields. However, these approaches

are computationally prohibitive in iterative design studies as multiple elements are needed for

each layer. Therefore, these models are only used in areas of high stress concentration or for

safety-critical components.

Over recent decades, a large number of approximate, higher-order 2D theories have been

formulated with the aim of predicting accurate 3D stress fields while maintaining low com-

putational expense. The present research follows in these footsteps with particular focus on

laminated beams and plates with so-called 3D heterogeneity, i.e. laminates comprised of layers

with material properties that may differ by multiple orders of magnitude and that also vary
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continuously in the plane of the beam or plate. The overall aims of the research are summarised

as follows:

1. To develop a robust higher-order modelling framework that predicts variationally consis-

tent 3D stress fields in laminated beams and plates with 3D heterogeneity to within a few

percent of 3D elasticity and 3D finite element solutions.

2. To implement the higher-order model numerically via a computer code that allows 3D

stress fields, and stress gradients towards boundaries and singularities to be captured in a

computationally efficient manner, i.e. using the smallest number of degrees of freedom. In

order to maximise the model’s potential use in industrial design applications, the numerical

solution technique should be extendable to structures of arbitrary shape.

3. To compare the results of the present framework against other higher-order formula-

tions in order to elucidate certain advantages and disadvantages of the present and other

commonly-used 2D higher-order and 3D finite element techniques.

4. To provide physical insight into the governing factors that drive non-classical effects by

studying non-traditional materials and stacking sequences with pronounced transverse

anisotropy, with the aim of aiding the intuition of structural engineers in preliminary

design stages.

5. To elucidate differences in the transverse stress response of straight-fibre and tow-steered

composites, and to subsequently tailor the through-thickness stress fields via in-plane

stiffness variations in order to minimise the likelihood of delaminations.

1.3 Thesis outline

The thesis is structured as follows:

• Chapter 2 begins with a detailed review of the literature on the fundamental variational

principles of mechanics, and then leads into a treatise of different higher-order equivalent

single-layer theories (ESLTs) that can be derived by means of these principles. Research

into ESLTs has received considerable attention throughout the last century and has led

to an extensive corpus of work. It is therefore not possible, nor indeed in the intention of

the author, to mention all papers and different theories that have been published. Rather,

the author has attempted to classify different formulations into groups and to discuss the

seminal works therein. In an attempt to elucidate the advantages and disadvantages of

certain formulations, a large number of models were implemented numerically throughout

this research project. Thus, the author has given special attention to those models that

have most aided the author’s appreciation and understanding of the field. The chapter

concludes with a review of the recent literature on tow-steered composites and the dif-

ferential quadrature method, where the latter has been found to be a versatile numerical

technique for solving the variable-coefficient partial differential equations that govern the

mechanics of tow-steered composites.
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• Chapter 3 discusses certain static inconsistencies that arise in displacement-based, ax-

iomatic, higher-order theories that enforce the condition of vanishing transverse shear

strains a priori. This condition leads to a physically inaccurate essential boundary condi-

tion at a clamped edge, and causes an inconsistency between the shear stress resultants

derived from the equilibrium and constitutive equations of elasticity. A more consistent

approach is to use generalised higher-order theories written in the form of a power se-

ries, as is done in generalised theories. Finally, Chapter 3 introduces a nondimensional

parameter that can be used to gauge the accuracy of a higher-order theory.

• In Chapter 4, the governing equations1 of a higher-order model for highly heterogeneous,

variable-stiffness beams is derived using a contracted Hellinger-Reissner functional. This

functional reduces the number of variables in the governing equations by basing the trans-

verse stress assumptions on integrations of the axial stress. The model is derived using a

generalised Taylor series notation, such that any order of theory can be chosen a priori

without re-deriving the governing equations.

• In Chapter 5, the higher-order, mixed-variational formulation derived in Chapter 4 is im-

plemented in a computer code using the differential quadrature method, and then used to

analyse a comprehensive set of straight-fibre composite and sandwich beams in stretching

and bending. The accuracy of the model is validated against 3D elasticity and 3D finite

element solutions, and also compared to a second mixed-variational formulation that is

commonly implemented in the literature. The model is then used to study the mechanics

and origin of stress gradients towards clamped edges, and used to assess the importance

of different higher-order effects on the structural behaviour.

• Chapter 6 extends the analysis of Chapter 5 to tow-steered, variable-stiffness beams. The

results of the present formulation are again compared against 3D finite element solutions,

and the correlation of the stress fields with the benchmark solution demonstrate the

successful application of the model to layered structures with material properties that

vary continuously or discretely in all three dimensions. The model is also used to analyse

transverse boundary layers towards external surfaces, which are not modelled rigorously

by 3D finite elements. Finally, the model is implemented in an optimisation study that

tailors the 3D stress fields to find a compromise between maximising bending stiffness and

minimising the chance of delaminations.

• In Chapter 7, the higher-order model for laminated one-dimensional beams presented in

Chapter 4 is extended to two-dimensional plates. The derivation of the model is based

on the notion that accurate transverse shear and normal stress fields can be derived by

integrating the in-plane stresses of displacement-based, higher-order theories in Cauchy’s

3D equilibrium equations. It is proven mathematically that the ensuing transverse stress

assumptions always obey the interfacial and surface equilibrium conditions when applied

1Note that throughout this monograph the term “governing equations” is used to refer to the combined set of
governing field equations and boundary conditions of a continuum. If referred to separately, the terms “governing
field equations” and “boundary conditions” will be used as such.
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within a variational statement that enforces Cauchy’s 3D equilibrium equations as con-

straint conditions, hence the Hellinger-Reissner mixed-variational statement. Note that

the formulation presented here is generalised, i.e. the order of the theory can adapted with-

out having to rewrite the governing equations, but it is not unified as other displacement-

based or mixed-variational theories are not included in the formalism.

• In Chapter 8, the mixed stress/displacement-based, higher-order plate theory derived in

Chapter 7 is applied to the bending of orthotropic, anisotropic and variable-stiffness plates

and sandwich laminates for different boundary conditions and applied surface tractions.

The accuracy of the plate model is compared against 3D elasticity solutions and 3D finite

element models. Different orders of the model are implemented and compared to establish

useful guidelines recommending the order of expansion required for different laminates.

Finally, the relative influence of transverse shear deformation on tow-steered composites,

compared to a quasi-isotropic and homogeneous straight-fibre laminate, is assessed.

• Chapter 9 summarises the contributions of this thesis and makes suggestions for fu-

ture work. In particular, the findings on displacement-based theories, the newly derived

Hellinger-Reissner model and new insights into the higher-order behaviour of 3D hetero-

geneous beams and plates are highlighted. Finally, suggestions regarding the extension of

the presented Hellinger-Reissner framework to curved arches and shells, and more general

topologies using the finite element method are made.
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Chapter 2

Literature Review

2.1 Variational principles of solid mechanics

Any body in Cartesian three-dimensional space R3 = (x1, x2, x3), as depicted in Figure 2.1,

subjected to certain force and displacement boundary conditions is defined by 15 unknown

quantities - three displacements (u1, u2, u3), six strain components (ε11, ε22, ε33, ε23, ε13, ε12) and

six stress components (σ11, σ22, σ33, σ23, σ13, σ12). With proper boundary conditions there exists

a unique equilibrium state that can be determined by solving the six kinematic, six constitutive

and three equilibrium equations of elasticity. For a body deforming isothermally and linearly

in R3, the governing field equations in indicial notation are

Kinematics: εij =
1

2
(ui,j + uj,i) , i, j = 1, 2, 3 (2.1a)

Constitutive: σij = Cijklεkl, Cijkl = Cklij , i, j = 1, 2, 3 (2.1b)

or: εij = Sijklσkl, Sijkl = Sklij , i, j = 1, 2, 3

Equilibrium: σij,j + fi = ρüi, σij = σji, i, j = 1, 2, 3 (2.1c)

where fi are applied body forces, ρ is the volumetric mass density of the body, Cijkl and Sijkl

are components of the fourth-order stiffness and compliance tensors, respectively, εij and σij are

the components of the linear Green-Lagrangian strain and Cauchy stress dyads, respectively,

and the comma notation is used henceforth to denote partial differentiation. Furthermore, the

superposed dot indicates differentiation with respect to time, and repeated roman indices j

imply summation over the indicated range j = 1, 2, 3. To guarantee a unique solution, these

governing field equations are combined with pertinent initial and boundary conditions of the

following form:

Initial conditions (time = 0 and xi inside body):

ui = u0
i , u̇i = v0

i (2.2a)

Boundary conditions (time ≥ 0 and xi on boundary surface):

Essential conditions: ui = ûi, Natural conditions: σijnj = t̂i (2.2b)

where u0
i and v0

i are initial displacements and velocities within the body, and ûi and t̂i
1 are the

specified displacements and tractions on the boundary surface with normal vector n.

Finding an accurate solution to the system of equations (2.1) under conditions (2.2) is the

primary goal of solid mechanics. Depending on the type of boundary conditions enforced in the

problem, i.e. of essential or natural type, the system of governing equations can be solved using

1Throughout this monograph, a hatˆindicates a quantity prescribed on the boundary.
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σn = t̂
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S

Figure 2.1: A linear elastic body of volume V in static equilibrium. The boundary surface
S : S1 ∪ S2 is split into S1 on which surface displacements û are prescribed, and
S2 on which surface tractions t̂ are prescribed.

three distinct approaches:

1. Displacement-based problems: With a certain displacement field û specified over the en-

tire boundary surface S of the body, the governing field equations are recast in terms of

the displacement field u = ui only by eliminating the stresses in the equilibrium equa-

tion (2.1c) using a combination of the constitutive equations (2.1b) and the kinematics

Eq. (2.1a).

2. Stress-based problems: With certain tractions t̂ specified over the entire boundary surface

S of the body, the governing field equations are recast in terms of stresses σ = σij only

by taking the constitutive equation (2.1b) in terms of the compliance tensor Sijkl and

substituting this into the kinematic equations (2.1a), which is then simplified using the

equilibrium equations (2.1c).

3. Mixed problems: With certain displacements û specified over one portion of the boundary

surface S1 and tractions t̂ specified over the remaining portion S2, the displacement and

stress fields u and σ are solved for simultaneously. The large majority of problems in

solid mechanics are of this type.

In general, some form of displacement and/or stress assumptions that satisfy boundary con-

ditions (2.2) are made to solve the three problems outlined above. However, finding an exact

solution to linear elasticity problems at each material point within volume V is a very strong

requirement. The variational principles of solid mechanics are powerful techniques for finding

approximate solutions to elasticity problems by solving the equations in the sense of an inte-

gral. In this manner, some of the governing field equations, e.g. kinematic equations (2.1a) and

constitutive relations (2.1b), are satisfied exactly, whereas other equations, e.g. the equilibrium

equations (2.1c), produce a residual and hence, an approximate solution is found. Variational

principles are expressed in terms of an energy balance of geometrically admissible displace-

ment and/or statically admissible stress fields, and the minimisation of the associated energy

functional by means of the calculus of variations, leads to the intrinsic Euler-Lagrange equa-

tions. The functionals involved typically refer to physical quantities that are invariant under

coordinate transformations. This property makes the variational approach a powerful tool for
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2.1. Variational principles of solid mechanics

structural analysis, as formulating the variational principle in one coordinate system means that

the governing equations in another can easily be derived by rewriting the functional and per-

forming the variations. This obviates the need for deriving equilibrium equations from free body

diagrams, which can become complex for curvilinear coordinate systems or geometrically non-

linear problems. Finally, auxiliary variational statements are readily derived by substitutions

of other potential functions, or by applying constraint conditions via Lagrange multipliers.

The basis of variational methods in solid mechanics is the Principle of Virtual Displace-

ments (PVD), which is an application of the Principle of Virtual Work (PVW) to the study of

solid mechanics, and is discussed in many books on the topic e.g. [8, 9]. It states that a body

constrained by a certain set of geometric conditions, i.e. essential boundary conditions, may

displace into a large set of possible admissible configurations. However, only one unique con-

figuration exists that satisfies the equilibria of forces and moments, and this corresponds to the

actual configuration of the body. Thus, a mechanical system is in equilibrium if the sum of the

virtual work δW , done by the external and internal forces acting on the system when the body is

perturbed by arbitrary, yet geometrically admissible virtual displacements δu = (δu1, δu2, δu3)

from the true configuration u = (u1, u2, u3), is zero. Hence, δW = 0 for equilibrium.

Following the notation in Figure 2.1, an elastic body is subjected to body forces f acting

throughout its volume V , displacements û on the boundary surface S1 and surface tractions

t̂ on the boundary surface S2, where S1 and S2 are disjoint and their sum is equal to the to-

tal boundary surface S. The equilibrium condition of the PVD, stating that all internal and

boundary forces must remain in equilibrium if the body is displaced from its true configura-

tion u by a geometrically admissible variation δu, is now enforced in a weak sense using the

method of weighted residuals. Thus, equilibrium equations (2.1c) and natural boundary con-

ditions (2.2b) are evaluated in an integral sense with the virtual displacements δu acting as

weighting functions,

δW = −
∫
V

(σij,j + fi) δuidV +

∫
S

(
σijnj − t̂i

)
δuidS = 0 (2.3)

where dV = dxdydz and dS are the differential volume and surface area elements in Cartesian

R3 coordinates, respectively. By applying the divergence theorem on σij,j in the volume integral

of Eq. (2.3), and combining the ensuing derivatives of the weighting functions δui,j by means

of the variation of the kinematic equation δεij =
1

2
(δui,j + δuj,i), we get

δW =

∫
V

(σijδεij − fiδui) dV −
∫
S2

t̂iδuidS = 0 (2.4)

where a sum on repeated indices is implied, and the boundary integrals of terms σijnj in

Eq. (2.3) cancel with the boundary integrals that arise by applying the divergence theorem. In

the variational statement of the PVD in Eq. (2.4), the weighting functions δu must satisfy the

geometric boundary conditions, and therefore, by definition, δu = 0 on S1. Thus, the boundary

integral in Eq. (2.4) is only evaluated over S2 where δu is arbitrary and not defined a priori.

As no explicit constitutive assumptions are made, the PVD is independent of any material

system, and thus applies to elastic and inelastic continuum problems. In general, the PVD is

11



2.1. Variational principles of solid mechanics

applied with a certain admissible, axiomatic displacement assumption δu which is then used

to calculate the strains ε via the kinematic equations (2.1a), thereby inherently satisfying the

compatibility of strains. In this manner, minimising the energy functional δW using the calculus

of variations yields the equations of equilibrium and natural boundary conditions as the Euler-

Lagrange equations.

A complementary principle to the PVD is the Principle of Virtual Forces (PVF). This

variational statement stipulates that of all statically admissible stress fields σ, i.e. those that

equilibrate with the tractions t on boundary surface S2, the stress state that enforces the

compatibility condition of displacements u and strains ε when the body is perturbed by a

virtual stress field δσ from the current equilibrium state, is the true stress state. In the PVF,

the virtual stresses δσ are used as weighting functions to enforce the compatibility of strains ε

and displacements u in an integral sense. The ensuing functional of the PVF reads

δW ∗ =

∫
V

[
εij −

1

2
(ui,j + uj,i)

]
δσijdV +

∫
S

(ui − ûi) δtidS = 0 (2.5)

where δW ∗ is known as the complementary virtual work. By means of applying the divergence

theorem on ui,j in the volume integral, Eq. (2.5) is transformed into

δW ∗ =

∫
V

(εijδσij + uiδσij,j) dV −
∫
S1

ûiδtidS +

∫
S2

ui (δti − njδσij) dS = 0. (2.6)

By requiring that the virtual stresses δσij satisfy the equilibrium equation δσij,j = −δfi, and the

boundary condition of prescribed tractions δσijnj = δti on S2, the above variational statement

Eq. (2.6) is simplified to

δW ∗ =

∫
V

(εijδσij − uiδfi) dV −
∫
S1

ûiδtidS = 0. (2.7)

Note, the PVF is valid irrespective of the chosen material system and thus applies to elastic and

inelastic continuum problems. In general, the PVF is used to derive the governing equations for

a certain axiomatic stress assumption δσ that satisfies the equilibrium equations and natural

boundary condition δt = 0 on S2. In this manner, minimising the energy functional δW ∗ using

the calculus of variations yields kinematic compatibility and essential boundary conditions as

the Euler-Lagrange equations.

A number of additional variational statements can be derived directly from the PVD and

the PVF. First, if we assume that a positive-definite strain energy per unit volume function U0

can be written in terms of the strains εij at any point throughout the body, then in the absence

of temperature variations and non-conservative forces, the stresses within the elastic body can

be derived directly from the strain energy density U0(εij) via the constitutive equation. Hence,

σij =
∂U0(εij)

∂εij
. (2.8)
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2.1. Variational principles of solid mechanics

Introducing the constitutive equation (2.8) into the PVD of Eq. (2.4) gives∫
V
fiδuidV +

∫
S2

t̂iδuidS =

∫
V

∂U0

∂εij
δεijdV =

∫
V
δU0dV = δU (2.9)

where U is the strain energy of the entire body. Furthermore, the expression on the left hand

side of Eq. (2.9) is defined as the variation of the potential of the external applied loads δVe

with respect to u. Hence,

Ve =

∫
V
fiuidV +

∫
S2

t̂iuidS. (2.10)

Thus, the PVD can now be written in terms of the energy functionals U and Ve in Eqs. (2.9)

and (2.10), respectively, such that

δΠ(u) ≡ δ (U − Ve) = 0 (2.11)

where the sum U − Ve = Π is called the total potential energy of the elastic body and the

variational statement in Eq. (2.11) is known as the Principle of Minimum Potential Energy

(PMPE). By introducing the kinematic relations Eq. (2.1a), the PMPE is typically written in

terms of the displacements u and hence, the PMPE states that among all the geometrically

admissible fields u the actual displacements are those that minimise the total potential energy.

Note that by introducing the constitutive equation into the PVD, the PMPE is only valid

for linear and nonlinear elastic bodies, i.e. stresses are conservative and all deformations are

isothermal.

Similarly, by assuming that a positive-definite complementary energy per unit volume func-

tion U∗0 exists, which can be written in terms of the stresses σij at any point throughout the

body, stresses and strains are related by the following constitutive relation

εij =
∂U∗0 (σij)

∂σij
. (2.12)

Introducing the constitutive equation (2.12) into the PVF of Eq. (2.7) gives∫
V
uiδfidV +

∫
S1

ûiδtidS =

∫
V

∂U∗0
∂σij

δσijdV =

∫
V
δU∗0 dV = δU∗ (2.13)

where U∗ is the complementary energy of the entire body. Furthermore, the expression on the

left hand side of Eq. (2.13) is the variation of the potential of the external applied displacements

δV ∗e with respect to f and t. Hence,

V ∗e =

∫
V
uifidV +

∫
S1

ûitidS. (2.14)

Thus, the PVD can now be written in terms of the energy functionals U∗ and V ∗e in Eqs. (2.13)

and (2.14), respectively, such that

δΠ∗(σ) ≡ δ (U∗ − V ∗e ) = 0 (2.15)
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2.1. Variational principles of solid mechanics

where the sum U∗− V ∗e = Π∗ is called the total complementary energy of the elastic body, and

the variational statement in Eq. (2.15) is known as the Principle of Minimum Complementary

Energy (PMCE). The PMCE states that among all the statically admissible fields σ, the actual

stresses are those that minimise the total complementary energy. Again, note that by introduc-

ing the constitutive equation into the PVF, the PMCE is only valid for elastic bodies with either

linear or nonlinear constitutive behaviour. For inelastic bodies, e.g. nonconservative systems

where the work potential is a function of the path taken, the stresses and strains cannot be

mapped via a potential function, and the PMCE does not hold.

It is worth noting that for linear stress-strain relations we have U0(εij) = U∗0 (σij), and both

functions carry the same physical meaning of internal strain energy. In this case we can write

U0(εij) =
1

2
Cijklεijεkl and U∗0 (σij) =

1

2
Sijklσijσkl. (2.16)

However, when the stress-strain relations are nonlinear, the two quantities are different and

given by the respective areas underneath the stress-strain curves. Hence,

U0 =

∫ εij

0
σijdεij and U∗0 =

∫ σij

0
εijdσij . (2.17)

Thus, U0 and U∗0 are complementary to each other in terms of expressing the sum of respective

stress-strain products, i.e. U0 + U∗0 = σijεij .

A characterisation of the relation between the PVD and the PVF is succinctly given by

Reissner [10]. In the PMPE, the displacements are taken as the unknowns, and a constitutive

relation between stresses and derivatives of displacements is defined a priori, such that the

differential equations of equilibrium are derived as the variational Euler-Lagrange equations. In

the PMCE, the stresses are taken as the unknowns, and the differential equations of equilibrium

serve to constrain the class of statically admissible stresses, such that the variational Euler-

Lagrange equations yield the pertinent stress-displacement relations. Therefore, the solutions

to the PMPE and the PMCE result in approximate solutions to the boundary value problem,

whereby one part of the complete system of differential equations, either the stress-displacement

relations or the equilibrium equations, is enforced explicitly, whereas the other is satisfied only

approximately.

In applying these variational statements, the structural engineer needs to remain wary of

the approximate nature of these solutions. For example, consider the popular displacement-

based Finite Element Method (FEM) as derived from the PVD. This method may provide

excellent predictions for the displacements of the body if the admissible shape functions are

chosen to accurately satisfy the geometric boundary conditions. However, the derivation of the

stresses is not as reliable for two reasons. First, the exact equilibrium equations and natural

boundary conditions are solved in their weak weighted-integral form, which is not equivalent

to the strong form in a finite-dimensional solution space. Hence, the equilibrium and natural

boundary conditions are therefore only satisfied globally in an average sense. Second, stresses

are derived from the differentiation of displacements and this operation is not as accurate as

treating the stresses directly as functional unknowns [9]. Thus, in the displacement-based FEM

approach, the exact equilibrium equations of elasticity and the natural boundary conditions
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2.1. Variational principles of solid mechanics

are not enforced point-by-point, and may be violated locally. As a result, the approximate

solutions obtained by the displacement-based FEM are always smaller than the real solution,

i.e. the lowest energy solution, such that the solution makes the system stiffer than the true 3D

elasticity solution [11].

Another form of the PMPE and the PMCE are the so-called mixed-variational statements,

which allow simultaneous assumptions of displacements and stress fields, some of which take

the role of constraint conditions. In this manner, approximate solutions to the 3D boundary

value problem are found that do not give “preferential treatment” [10] to either set of stress-

displacement or equilibrium equations. As a result, both the stress-displacement relations and

the differential equations of equilibrium are obtained as the variational Euler-Lagrange equa-

tions.

For example, in the derivation of the PMPE, the compatibility condition of the strains

is explicitly enforced by replacing ε directly with geometrically admissible displacements u

via the kinematic equations (2.1a). This statement can be generalised by introducing the

strains as functional unknowns in the variational statement, and enforcing the compatibility

condition and essential boundary conditions in a variational sense via Lagrange multipliers.

Thus, the kinematic equations (2.1a) and essential displacement boundary conditions Eq. (2.2b)

are introduced as variational constraints, with the stresses σ and surface tractions t serving as

Lagrange multipliers. Hence,

δΠHW (u, ε,σ) = δ

{∫
V

[U0(εij)− fiui] dV −
∫
S2

t̂iuidS−∫
V

[
εij −

1

2
(ui,j + uj,i)

]
σijdV −

∫
S1

(ui − ûi) tidS
}

= 0. (2.18)

This approach, known as the Hu-Washizu (HW) variational principle, is a generalisation of the

PMPE in that it allows 15 independent assumptions in terms of displacements u, strains ε

and stresses σ, such that kinematic equations, constitutive stress-strain relations, equilibrium

equations, and both essential displacement and natural force boundary conditions are derived

as Euler-Lagrange equations.

Similarly, in the PMCE, it is assumed that the stresses σ equilibrate and are statically

admissible on the boundary by enforcing this condition explicitly in the PVF. This condition

can be imposed in a variational sense by adding the equilibrium equations (2.1c) and natural

boundary conditions (2.2b) as constraint conditions to the PMCE via Lagrange multipliers. In

this case, the Lagrange multipliers equal the three displacements u. Hence,

δΠHR(u,σ) = δ

{∫
V
U∗0 (σij)dV −

∫
S1

ûitidS +

∫
V

(σij,j + fi)uidV−∫
S2

(
σijnj − t̂i

)
uidS

}
= 0. (2.19)

This variational statement is known as the Hellinger-Reissner (HR) variational principle, and

allows nine independent assumptions in terms of displacements u and stresses σ, such that equi-

librium equations, differential stress-displacement relations, and essential and natural boundary
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Figure 2.2: Relationship of different variational statements. Adapted from Washizu [9].

conditions are derived as the Euler-Lagrange equations. Furthermore, the HR principle can be

interpreted as a special case of the generalised HW principle in that the strains ε are no longer

independent but specified a priori using a constitutive relation of the form Eq. (2.12). The

advantage of eliminating the strain components is that the number of unknowns is reduced.

Due to the relation between the HR and HW principles, it is evident that the derivation

of mixed-variational principles from the PMPE and the PMCE is reciprocal and equivalent for

small displacements. This relationship is depicted schematically in Figure 2.2. The HW princi-

ple is the most general principle as it allows independent assumptions of all 15 unknowns. The

HR principle and the PMPE are derived directly from this generalised principle by eliminating

certain variables and constraint conditions. For detailed mathematical derivations of the HW

and HR principles, as well as proofs of the validity of all variational statements, the interested

reader is directed to Chapters 1 and 2 in the comprehensive monograph by Washizu [9].

The variational statements introduced herein are especially useful for deriving the governing

differential equations for 2D plates and shells. In these theories, the 3D problem is condensed

onto an equivalent single layer by integrating in the direction of the smallest dimension. There-

fore, the governing field equations (2.1) and boundary conditions (2.2) in the remaining two

dimensions need to be adapted accordingly. One aim of the present work is to show that the HR

principle is a powerful technique for deriving computationally efficient 2D theories that allow

accurate computations of 3D stress fields, including local stress gradients towards boundaries.

16



2.2. Higher-order structural modelling of composite laminates

2.2 Higher-order structural modelling of composite laminates

In practical applications, composite laminates are typically modelled as thin plates and shells

because the thickness dimension t is at least an order of magnitude smaller than representative

in-plane dimensions Lx and Ly. This feature allows the problem to be reduced from a 3D to a

2D one coincident with a chosen reference surface of the plate or shell. The major advantage of

this approximation is a significant reduction in the total number of variables and computational

effort required. Such a theory is aptly called an Equivalent Single-Layer Theory (ESLT) as the

through-thickness properties are compressed onto a reference layer by integrating properties of

interest through the thickness. Many ESLTs are based on the axiomatic approach, whereby

intuitive postulations of the displacement and/or stress fields in the thickness z-direction are

made. Appropriate displacement-based, stress-based or mixed-variational formulations are then

used to derive variationally consistent governing field equations and boundary conditions.

A second possible 2D approach is the asymptotic method, whereby the 3D governing equa-

tions are expanded in terms of a small perturbation parameter p and the terms related by the

same power of pi are grouped together. For example,

L3D ≈ L1p
1 + L2p

2 + · · ·+ LNopNo (2.20)

where Li is some differential operator and No is the order of the theory. The perturbation

parameter is often chosen to be the thickness to length ratio p = t/L, such that governing

equations related to the same order of p model the significant effects at the specific length

scale (t/L)p. As a result, the accuracy of the solution is refined by sequentially solving the

governing equations L1, L2 and so on. The disadvantage of asymptotic methods is that large

number of terms in the power series Eq. (2.20) may be needed to guarantee convergence as the

thickness increases [12]. Second, consistent analysis is complicated by the fact that higher-order

effects are also driven by the orthotropy ratios E11/G13, E22/G23 and E11/E22. Therefore,

mechanical-layerwise perturbation parameters may also be needed to capture the full structural

behaviour.

The ad-hoc displacement and/or stress assumptions of axiomatic approaches facilitate an

intuitive understanding of the underlying physical behaviour. For this reason, the rest of this

literature review, and indeed the rest of this thesis, focuses on axiomatic theories. The reader

interested in the application of asymptotic methods to problems in structural mechanics is

directed to the textbook by Ciarlet et al. [13] and a review article on the variational asymptotic

method by Yu et al. [14].

2.2.1 Displacement-based axiomatic theories

The most prominent example of an axiomatic ESLT is the Classical Theory of Plates (CTP)

developed by Kirchhoff [15] and then revisited by Love [16], and its extension to laminated struc-

tures, namely Classical Laminate Analysis (CLA) [17]. The principle assumptions of Kirchhoff’s

theory are that:

1. Transverse normals to the reference surface before deformation are inextensible and remain

17



2.2. Higher-order structural modelling of composite laminates

normal after deformation.

2. Plane sections remain plane, i.e. there is no distortion of the cross-section.

3. The transverse normal stress may be neglected in comparison with the stresses acting in

the direction parallel to the reference surface.

4. All strains are sufficiently small, i.e. ε� 1, and Hooke’s law applies.

These assumptions mean that the effects of through-thickness shear and normal strains are

ignored, the in-plane displacement fields ux and uy are assumed to vary linearly through the

thickness, and the transverse displacement uz is assumed to be constant. Thus, the 3D dis-

placement field is assumed to obey

ui(x, y, z) = u0i − zw0,i, i = x, y (2.21a)

uz(x, y) = w0. (2.21b)

This approach reduces the number of displacement unknowns to three, namely the two axial

stretching deformations u0x and u0y, and the constant transverse deflection w0 of the reference

plane.

The design of primary load-bearing structures requires accurate tools for stress analysis.

When used around areas of stress concentration or in fail-safe design frameworks, composite

laminates are often designed to have thicker cross-sections. Under these circumstances, non-

classical effects, such as transverse shear and normal deformations, become important factors

in the failure event. Furthermore, the analysis of layered composite structures is significantly

more cumbersome due to a plethora of new features, such as in-plane anisotropy (IA); transverse

anisotropy (TA); and interlaminar displacement, transverse shear and transverse normal stress

continuity (IC). For example, composite laminae often exhibit much greater values of Young’s

modulus orthotropic ratio (E11/E22 = E11/E33 ≈ 140/10 = 14), i.e. in-plane orthotropy, than

isotropic materials (Exx = Eyy = Ezz).

Furthermore, the induced error of Kirchhoff’s hypothesis for isotropic plates is around 5%

for thickness to characteristic length ratios t/L of around 1/10 [8]. For fibre-reinforced plas-

tics, transverse shear deformations are more pronounced because the ratio of longitudinal to

shear modulus is approximately one order of magnitude greater (Eiso/Giso = 2.6, E11/G13 ≈
140/5 = 28). The nondimensional ratios λx = E11/G13(t/Lx)2 and λy = E22/G23(t/Ly)

2 drive

what Everstine and Pipkin [18] called the “stress-channelling” effect on axial stress, as shown in

Figure 2.3. Weaver [19] showed that as the nondimensional ratios λi increase, the cross-section

shears exceedingly and transitions from a constant rotation to a higher-order distortion field.

This nonlinear distortion is equivalent to a channelling of the axial stresses towards the surfaces.

Due to the greater value of E11/G13 and E22/G23 in composites, the “stress channelling” effect

is more pronounced in composite laminates than for isotropic plates of the same thickness to

characteristic length ratio t/Li.

Most notably, transverse anisotropy, i.e. the difference in layerwise transverse shear and

normal moduli, leads to sudden changes in slope of the three displacement fields ux, uy, uz at

layer interfaces. This is known as the zig-zag (ZZ) phenomenon. In fact, Carrera [21] points
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Figure 2.3: Variation of normalised in-plane stress profile σ̄x through the thickness of a [0]
laminate for different values of λ = E11/G13(t/Lx)2. Results from Pagano’s 3D
elasticity solution [20].

out that “compatibility and equilibrium, i.e., ZZ and IC, are strongly connected to each other.”

Thus, while IC of the displacements requires ux, uy, uz to be C0 continuous at interfaces, IC

of the transverse stresses forces the displacement fields to be C1-discontinuous. Motivated by

these considerations, Demasi [22] showed that the ZZ form of the in-plane displacements ux, uy

and uz can be derived directly from the continuity of τxz, τyz and σz, respectively. Therefore,

an accurate model for multilayered composite and sandwich structures should ideally address

the modelling issues denoted as C0
z -requirements by Carrera [12,23]:

1. Through-thickness continuous displacements and transverse stresses, i.e. the IC condition.

2. Discontinuous z-wise displacement derivatives at layer interfaces where transverse me-

chanical properties change, i.e. the zig-zag effect.

At the same time, the accuracy of the model should not come at the cost of excessive compu-

tational expense if the model is to be used for iterative design studies in industry.

Due to the complexities of modelling displacement and stress fields in layered structures,

high-fidelity 3D finite element methods (FEM) are often employed for accurate structural anal-

ysis. However, these models can become computationally prohibitive when employed for lami-

nates with large number of layers; optimisation studies; nonlinear problems that require iterative

solution techniques; or for progressive failure analyses. Another class of model is the so-called

Layerwise Theory (LWT), where each layer within the laminate stack is given its unique set of

displacement unknowns, stress unknowns, or both. Whereas LWTs are able to satisfy both IC

and ZZ requirements, the added accuracy comes at a much greater computational cost. This is

because the number of variables of the theory scales with the number of layers in the laminate.
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In cases where 3D FEM techniques are required due to the presence of very localised stress

gradients or layerwise boundary conditions, LWTs can become a viable alternative [24].

Thus, with the aim of developing rapid, yet robust design tools for industrial purposes there

remains a need for further efficient modelling techniques. In this regard, particular focus is

required on ESLTs because the number of unknowns in these formulations is independent of the

number of layers. A full comprehensive review of all axiomatic higher-order theories that have

been published throughout the last century is beyond the scope of this literature review. Thus,

the author has focused on the theories that have aided in developing the ideas and formulations

presented in the following chapters.

Since the first half of the 20th century, a number of models have been published that partially

or completely revoke at least one of Kirchhoff’s original assumptions, known collectively as

Love’s Second Approximation Theories. One of the earliest examples is the First-Order Shear

Deformation Theory (FSDT), which assumes that normals to the reference surface do not

remain normal after deformation. Thus, rotations of the cross-section with respect to the

undeformed state, θx and θy, are introduced as new degrees of freedom into the displacement

field assumptions. Hence,

ui(x, y, z) = u0i + zθi, i = x, y (2.22a)

uz(x, y) = w0. (2.22b)

In FSDT, the effect of shear deformation on the cross-section is captured in an average sense.

Timoshenko [25] famously applied this hypothesis to the classical model for isotropic Euler-

Bernoulli beams, whereas a 2D extension for isotropic and single-layer plates was presented by

Mindlin [26], and then extended to multilayered plates by Yang, Norris and Stavsky [27]. FSDT

improves the predictions for global structural phenomena, such as bending displacement and

low-frequency buckling and vibrational modes, but does not improve localised strain and stress

predictions. Especially for highly heterogeneous and thick composite and sandwich laminates,

FSDT is limited by its uniform transverse shear strain assumption [28]. Furthermore, FSDT

produces piecewise-constant transverse shear stresses that violate continuity at layer interfaces,

and do not disappear at the top and bottom surfaces. Finally, as the actual transverse shear

stress profile is at least quadratic, shear correction factors are needed to energetically adjust the

constant through-thickness strain profile. Determining the magnitude of these shear correction

factors is not a straightforward task, especially in the case of highly heterogeneous laminates, and

various methods addressing such concerns have been published in the literature [29–31]. In this

regard, a new approach based on an asymptotic power series expansion for highly-orthotropic

single-layers is presented in Chapter 3.

To account for the actual higher-order distribution of transverse shear stresses τxz and τyz

through the thickness, and to guarantee that these disappear at the top and bottom surfaces

when no shear tractions are applied, the so-called Higher-Order Shear Deformation Theory

(HOT) was introduced. In general, the cross-section is allowed to deform in any form by

including higher-order terms in the axiomatic expansions of the in-plane displacements ux and
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2.2. Higher-order structural modelling of composite laminates

Table 2.1: Different higher-order shearing shape functions.

Model f(z) function

Ambartsumyan [35]
z

2

[
t2

4
− z2

3

]
Reddy [36] z

[
1− 4z2

3t2

]
Touratier [37]

t

π
sin
(πz
t

)
Soldatos [38] t sinh

z

t
− z cosh

1

2
Karama [39] ze−2(z/t)2

uy. Hence,

ui(x, y, z) = u0i + zθi + z2ζi + z3ξi + . . . , i = x, y (2.23a)

uz(x, y) = w0 (2.23b)

where the displacement unknowns associated with z coefficients of even power are higher-order

membrane deformations, and the unknowns associated with odd power coefficients of z are

higher-order bending rotations. A generalised expansion can be based on a number of different

polynomial expansions of z, e.g. power series as in Eq. (2.23) above, Lagrange polynomials or

Legendre polynomials, but the advantage of using the latter two orthogonal polynomials is that

the associated deformation variables u0i, θi, ζi, ξi, etc. are mathematically independent.

Vlasov [32] refined Mindlin’s theory by guaranteeing that transverse shear strains and

stresses disappear at the top and bottom surfaces in the absence of shear tractions. Taking

Vlasov’s condition into consideration, Levinson [33] proposed a third-order displacement field

for the axial deformation ux of a beam with a constant transverse displacement uz = w0. By

enforcing the shear strain to vanish at the top and bottom surfaces, the Euler-Bernoulli rotation

w0,x was introduced into the in-plane expansion ux, thereby reducing the number of variables to

that of Timoshenko beam theory. The associated bending moment and shear force were substi-

tuted into the well-known beam equilibrium equations, resulting in a variationally inconsistent

fourth-order differential equation featuring only the transverse displacement w0. Reddy [34]

extended Levinson’s theory to 2D problems featuring ux, uy and uz and derived the governing

field and boundary conditions in a variationally consistent manner using the PVD.

Thus, both Levinson [33] and Reddy [34] modified the general higher-order displacement

field of Eq. (2.23) by truncating the series of ux after the cubic z3 term, and then enforced

the physical boundary conditions of vanishing transverse shear strains at the top and bottom

surfaces. As a result, the higher-order membrane stretching terms ζi are eliminated and the

higher-order rotations ξi are rewritten in terms of w0,i and θi. These steps have led to a class

of theories that are collectively written as

ui(x, y, z) = u0i − zw0,i + f(z)γi, i = x, y (2.24a)

uz(x, y) = w0. (2.24b)
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2.2. Higher-order structural modelling of composite laminates

Here the unknown variables γi capture the magnitude of the cross-sectional distortion, where

f(z) is a pertinent shape function that approximates the parabolic distribution of the transverse

shear strains through the thickness, while guaranteeing that transverse shear strains vanish at

the surfaces. A large number of different shear shape functions f(z) have been published

ranging from polynomial [35, 36, 40] and trigonometric [37, 41–44], to hyperbolic [38, 45] and

exponential [39, 46], some of which are shown in Table 2.1. Karama et al. [39] point out that

expansions based on the combinations of exponential and linear functions in z are superior

to trigonometric functions as the former functions feature all even and odd powers in the

displacement expansion, and the coefficients of higher-order terms do not decay as quickly.

However, as shown in Chapter 3, the presence of the Kirchhoff rotations w0,i in the expansions

of the displacement assumptions for ux and uy in Eq. (2.24) leads to a static inconsistency at

clamped edges.

Another type of HOT, known as the Refined Plate Theory (RPT), was introduced by

Shimpi [47]. In RPT, the transverse displacement is split into separate bending and trans-

verse shear components, and the axial displacement is a function of individual bending and

transverse shearing rotations. As a result, the bending components do not contribute towards

transverse shear forces, and shearing components do not contribute towards bending moments.

The advantages of this approach are that the governing equations maintain an intuitive resem-

blance to CPT, and allow the development of linear, isoparametric finite elements that are free

from shear locking.

In a so-called Advanced Higher-Order Theory (AHOT), the transverse normal strain is

incorporated in the displacement assumption by expanding the out-of-plane displacement uz as

a higher-order field in z. Here, the class of theory is generally denoted by {op, oz} where op

refers to the order of expansion of the in-plane displacements ux and uy, and oz refers to the

order of the transverse displacement uz. These theories obey Koiter’s Recommendation which

postulates that refinements of CPT should account for both transverse shear and transverse

normal strains [48]. Milestone works were presented by Hildebrand, Reissner and Thomas [49],

and Lo, Christensen and Wu [50], where the latter is a {3, 2} AHOT given by

ui(x, y, z) = u0i + zθi + z2ζi + z3ξi, i = x, y (2.25a)

uz(x, y, z) = w0 + zθz + z2ζz (2.25b)

where θz and ζz are higher-order thickness stretch variables. Further examples of AHOTs are

given in [50–53]. Generally, AHOTs only provide improvements that are worth their additional

computational effort for thick plates with characteristic length to thickness ratios less than 5:1;

sandwich panels with compliant, thick cores [22]; or for sandwich panels with one face-laminate

considerably stiffer than the other [54]. Also note that Eq. (2.25) is a generalised expansion of

the displacement field that does not enforce the boundary conditions of vanishing transverse

shear strains at the top and bottom surfaces a priori, as is the case for the class of theories

summarised by Eq. (2.24).

22



2.2. Higher-order structural modelling of composite laminates

2.2.2 Mixed-variational axiomatic theories

All of the previously discussed theories are based on displacement formulations where the dis-

placements ux, uy and uz are treated as the unknown variables. Consequently, all strains and

stresses are derived from the displacement assumptions using the kinematic and constitutive

equations, respectively. The governing equations are typically derived in a variationally consis-

tent manner using the PVD. A disadvantage of these displacement-based theories is that once

the governing equations are solved for the displacement unknowns, accurate transverse strains

and by extension accurate transverse stresses are not recovered accurately from the kinematic

relations and the constitutive equations [21], respectively. For example, the transverse shear

stresses typically violate the C0
z -requirements of interfacial traction continuity. More accu-

rate transverse stresses are often recovered a posteriori by integrating the in-plane stresses in

Cauchy’s 3D indefinite equilibrium equations [55]. The disadvantage of this technique is that

the post-processed transverse stresses no longer satisfy the underlying governing field equations,

and are therefore variationally inconsistent.

This post-processing operation can be precluded if some form of stress assumption is made.

One class of model is based on applying the HR mixed-variational principle. Here, the strain

energy is written in complementary form in terms of in-plane and transverse stresses, and

Cauchy’s 3D equilibrium equations are introduced as constraints via Lagrange multipliers (see

Eq.(2.19)). Reissner [56, 57] was the first to use the HR principle to derive a new first-order

theory for isotropic plates by assuming linear stress and displacement field assumptions through

the thickness of the plate.

Batra and Vidoli [58] and Batra et al. [59] used the HR principle to develop a higher-order

theory for studying vibrations and plane waves in piezoelectric and anisotropic plates, account-

ing for both transverse shear and transverse normal deformations, with all functional unknowns

expanded in the thickness direction using orthonormal Legendre polynomials. The researchers

showed that the major advantage of the HR principle is that by enforcing stresses to satisfy

the natural boundary conditions at the top and bottom surfaces, and by deriving transverse

stresses from the plate equations directly, the stress fields are closer to 3D elasticity solutions

than a displacement-based equivalent that relies on Hooke’s law to derive the stress fields. In

particular, this means that boundary layers near clamped and free edges, and asymmetric stress

profiles due to surface tractions on one surface only, can be captured accurately.

Cosentino and Weaver [60] applied the HR principle to symmetrically laminated straight-

fibre composites to develop a single sixth-order differential equation in just two variables: trans-

verse deflection w0 and stress function Ω. The formulation of this theory is an extension of

Reissner’s original first-order approach for isotropic plates [56,57] to anisotropic composite lam-

inates. The approach by Cosentino and Weaver [60] is less general than the one proposed by

Batra and Vidoli [58] as the in-plane and transverse stress assumptions are based on the same

set of functional unknowns in order to minimise the computational cost. In fact, the in-plane

stresses of CLA are integrated in Cauchy’s equilibrium equations to derive an a priori equili-

brated assumption for the transverse shear stresses. Chapters 4-8 show that the approach by

Cosentino and Weaver [60] can be generalised further into a computationally efficient modelling

framework of arbitrary order that can predict accurate 3D stress fields for laminates of arbitrary
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stacking sequence and layer properties.

Forty years after publishing his work on the HR principle mentioned above, Reissner [61]

had the insight that when considering multilayered structures, it is sufficient to restrict the

stress assumptions to the transverse stresses because only these have to be specified indepen-

dently to guarantee the IC requirements. This variational statement is known as Reissner’s

Mixed-Variational Theory (RMVT), and makes model assumptions for the three displacements

ux, uy, uz and independent assumptions for the transverse stresses τxz, τyz, σz. Compatibility of

the transverse strains derived from the kinematic relations, i.e. from ux, uy and uz, and the

constitutive equations, i.e. from τxz, τyz and σz, is enforced by means of Lagrange multipliers.

In this manner, the IC of transverse stresses and compatibility of strains is enforced a priori

in RMVT, whereas equilibrium of the 3D stress fields is not enforced explicitly as in the HR

principle. The relative benefits of these two mixed-variational approaches is studied in detail in

Chapter 5.

Another interesting contribution to the field of mixed-variational statements for composite

laminates is the work by Auricchio and Sacco [62]. In this work, the authors combine a HW-type

functional for the in-plane response, written in terms of the midplane strains and curvatures

of CLA, with a HR-type functional for the transverse shear response. The transverse shear

stresses are either based on independent piecewise-quadratic functions of z, or alternatively on

equilibrated stress assumptions as in the work by Cosentino and Weaver [60]. The researchers

conclude that the latter approach is the more suitable for accurate transverse shear stress results.

Note that the approach by Auricchio and Sacco [62] is more computationally expensive than

the model by Cosentino and Weaver [60] as the combination of HW and HR functionals in the

former depends on displacement, strain and stress unknowns, whereas the HR functional of the

latter only depends on displacement and stress variables.

2.2.3 Displacement-based and mixed-variational zig-zag theories

HOTs and AHOTs provide considerable improvements in terms of transverse stress profiles

and accurate modelling of global structural effects. However, these theories are not capable of

explicitly capturing ZZ effects as the in-plane variables ux, uy are defined to be at least C1
z -

continuous. In this regard ESLTs that incorporate ZZ kinematics present a good compromise

between local, layerwise accuracy and computational cost. Based on an historical review of the

topic by Carrera [63] the ZZ theories can generally be divided into three groups:

1. Lekhnitskii Multilayered Theory (LMT)

2. Ambartsumyan Multilayered Theory (AMT)

3. Reissner Multilayered Theory (RMT)

Lekhnitskii [64] appears to be the first author to propose a ZZ theory originally formulated

for multilayered beams. This was later extended to the analysis of plates by Ren [65, 66].

Ambartsumyan [35, 67] developed a ZZ theory for symmetric, specially orthotropic laminates

by making an assumption for the two transverse shear stresses based on a linear combination
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between the shear resultants Qx and Qy, an unknown through-thickness function f(z) = 1 −
4(z/t)2, and two shear functions φAx (x, y) and φAy (x, y). Hence,

τxz(x, y, z) = [Q
(k)
55 f(z) + a

(k)
55 ]φAx (x, y) (2.26a)

τyz(x, y, z) = [Q
(k)
44 f(z) + a

(k)
44 ]φAy (x, y) (2.26b)

where the constants a
(k)
55 and a

(k)
44 are found by enforcing transverse shear stress equilibrium

at layer interfaces, and at the top and bottom surfaces . The shear strains γxz and γyz are

consequently expressed in terms of Gxz and Gyz using the constitutive equations, and the

displacements ux and uy found by integrating the shear strains in the thickness z-direction with

uz = w0(x, y). Constants of integration are removed by enforcing that ux, uy disappear at the

midplane and by enforcing interlaminar continuity. Whitney [68] later extended the analysis to

symmetric laminates with off-axis plies and noted that the theory provides excellent results for

global laminate behaviour when compared to the 3D elasticity solutions of cylindrical bending

provided by Pagano [20, 69, 70]. However, Whitney also pointed out that the theory does not

give good local agreement for transverse shear stresses as it fails to capture the large slope

discontinuity at layer interfaces. The main reason for this is that the magnitude of the interface

discontinuity is driven by the ratio of G13/G23 in the Ambartsumyan theory, whereas in the

exact elasticity solution the driving ratio is E11/E22. Later the effects of transverse normal

strain [71] were included, and the theory was applied to shells and dynamic problems [72].

Di Sciuva [73, 74] introduced a displacement based ZZ theory where piecewise-linear ZZ

contributions in the thickness direction enhance a FSDT expansion for ux and uy. The slopes

of the layerwise ZZ functions are obtained by enforcing the same transverse shear stress for

all layers, and by defining the ZZ function to vanish across the bottom layer. As a result,

the transverse shear stress in all layers is identical to that of the bottom layer, causing a bias

towards the transverse shear stiffness of this layer. To overcome this counterintuitive property,

Averill [75] and Averill and Yip [76] introduced a penalty term in the variational principle that

enforces continuity of the transverse shear stresses as the penalty term becomes large. Tessler

et al. [77] note that the formulations based on Di Sciuva’s early works present two major issues:

1. The in-plane strains are functions of the second derivative of transverse deflection w0.

This fact means that less attractive C1 continuous shape functions of w0 are required for

implementation in FE codes.

2. The physical transverse shear forces derived from the first derivatives of the bending mo-

ments are different from the transverse shear forces derived by integrating the transverse

shear stresses over the plate cross-section, thus creating a modelling inconsistency.

To remedy these drawbacks, Tessler, Di Sciuva and Gherlone developed the Refined Zigzag

Theory (RZT) [77–80]. The kinematics of RZT are essentially those of FSDT enhanced by ZZ

variables ψi(x, y) that are multiplied by piecewise continuous transverse functions φ
(k)
i . Hence,
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in RZT

u
(k)
i (x, y, z) = u0i + zθi + φ

(k)
i (z)ψi, i = x, y (2.27a)

uz(x, y) = w0(x, y). (2.27b)

In this theory, the ZZ slopes β(k)
x = ∂φ(k)

x /∂z and β(k)
y = ∂φ(k)

y /∂z for ux and uy, respectively,

are defined by the difference between the transverse shear rigidities G(k)
xz and G(k)

yz of layer k,

and the effective transverse shear rigidity Gx and Gy of the entire layup,

β
(k)
i =

Gi

G
(k)
iz

− 1, and Gi =

[
1

t

Nl∑
k=1

t(k)

G
(k)
iz

]−1

, i = x, y (2.28)

where Nl is the total number of layers, and t(k) and t are the thickness of layer k and the

total laminate thickness, respectively. RZT has shown excellent results compared to the 3D

elasticity solutions by Pagano [20, 69] for both general composite laminations and sandwich

constructions. RZT has also been extended to include transverse normal stretching and higher-

order displacements for a ZZ theory of order {2,2} [81].

However, this first, displacement-based version of RZT still requires post-processing steps for

accurate transverse stress predictions. To remedy this, Tessler [82] recently developed a mixed-

variational approach for 1D beams using RMVT in a novel way, essentially splitting the variation

of the full RMVT functional into two separate operations: first, a variation of the Lagrange

multiplier functional for the compatibility condition, and second, a variation of the strain energy

functional. The first step is used to derive an accurate assumption for the transverse shear

stress. Integrating the RZT in-plane stress in Cauchy’s axial equilibrium equation derives an

expression for τxz in terms of second derivatives of the RZT in-plane displacement variables

and known through-thickness functions. The second derivative terms are then replaced by ad-

hoc stress functions that are determined in terms of the displacement unknowns themselves

using the first variation of the Lagrange multiplier functional. Thus, the strain compatibility

condition is not minimised as part of the full RMVT as was originally defined by Reissner [61].

The governing equations of the new theory, denoted by RZT(m), are then derived as the Euler-

Lagrange equations of the strain-energy functional, and are found to provide accurate transverse

shear stress results from the derived transverse shear stress assumption. In follow-up works, the

formulation was extended to plates [83,84] and then further to a {3, 2} HOT [85].

In a similar manner, Murakami [86] enhanced the axiomatic FSDT expansion by including

a zig-zag function, herein denoted as Murakami’s ZZ function (MZZF), that alternatively takes

the values of +1 or -1 at layer interfaces. Therefore, the slope purely depends on geometric

differences between plies and is not based on transverse shear moduli. In addition, Murakami

made independent, piecewise-parabolic assumptions for the transverse shear stresses and ap-

plied RMVT to obtain new governing equations. MZZF was subsequently applied to an AHOT

of degree {3, 2} by Toledano and Murakami [87]. In recent years, MZZF has been applied to

functionally graded materials [45], sandwich structures [88,89] and in the framework of the Car-

rera Unified Formulation (CUF) [90,91]. Carrera [92] investigated the effect of including MZZF

in first-order and higher-order displacement-based and mixed-variational theories, showing that
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superior representation of displacements and stresses, combined with less computational cost,

can be achieved by including a single ZZ term than a higher-order continuous term. On the

other hand, Gherlone [54] showed that MZZF leads to inferior results than the RZT ZZ func-

tion for sandwiches with large face-to-core stiffness ratios and laminates with general layups.

Thus, an accurate choice of the ZZ function seems to be of paramount importance. The relative

accuracies of the RZT ZZ function and MZZF are compared further in Chapter 5 and 8.

2.2.4 Generalised and unified formulations

A multiscale approach for modelling the multifaceted structural behaviour of composite lam-

inates in one unified model has been proposed by Williams [93]. The theory uses a general

framework with nonlinear von Kármán displacement fields, and additional temperature and

solute diffusion variables on two length scales, namely global and local, with the transverse

basis functions of the two length scales enforced to be independent. This results in two sets

of variationally consistent governing equations, such that the theory is capable of capturing,

in a coupled fashion, the thermo-mechanical-diffusional phenomena of laminates at the micro-,

meso- and macro levels simultaneously. The use of interfacial constitutive models allows the

theory to account for delamination initiation and growth, as well as nonlinear elastic or inelastic

interfacial constitutive relations, in a unified form. Williams [94] has shown that multi-length

scale theories can be more computationally efficient than pure layerwise models as the order of

the theory can be increased on both local and global levels. The displacement-based theory fea-

tures 3(Nog +NolNl) unknowns where Nog and Nol are the global and local number of variables

and Nl the number of layers. In general, Nog = Nol = 3 is sufficient for accurate 3D stress field

predictions as derived from the constitutive relations. In later work, Williams [95] developed an

improved formulation by deriving the governing equations from the method of moments over

different length scales, and enforcing the interfacial continuity of transverse stresses in a strong

sense.

The notion of a generalised axiomatic expansion was developed further by Carrera in what

is known as Carrera’s Unified Formulation (CUF) [23,96,97], and its extension the Generalized

Unified Formulation by Demasi (GUF) [24]. CUF is a hierarchical formulation where Taylor

series or Lagrange polynomials are used to approximate the displacement fields throughout the

cross-section [97]. This allows the order of the theory to be expressed as an input to the analysis.

In this manner, the governing field equations are formulated based on a generalised axiomatic

expansion. Theories of different order are easily implemented computationally without the need

for separately deriving new field equations. The Taylor series or Lagrange polynomial expansion

is not strictly limited to a function of the z-coordinate, such that bi-axial bending, torsion and

warping can be modelled by expanding in the x- and y-coordinates. Thus, in the framework of

CUF, the displacement field is expressed as the expansion of generic functions Fτ ,

u = Fτuτ , τ = 1, 2, . . . , No (2.29)

where Fτ are individual functions of the coordinates x, y and z; uτ is the vector of displacement

unknowns; No is the number of terms in the expansion, and according to the Einstein notation,
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repeated indices denote summation. For example,

ux(x, y, z) = ux1 + xux2 + yux3 + zux4 = Fτuxτ

uy(x, y, z) = uy1 + xuy2 + yuy3 + zuy4 = Fτuyτ

uz(x, y, z) = uz1 + xuz2 + yuz3 + zuz4 = Fτuzτ

where F1 = 1, F2 = x, F3 = y, F4 = z.

(2.30)

This compact notation allows the finite element stiffness matrix of the theory to be expressed

in terms of a few fundamental nuclei that are through-thickness integrals of material stiffness

terms multiplied by a combination of Fτ terms. Furthermore, the notation in Eq. (2.29) can

be generalised to incorporate mixed-variational statements, such as RMVT. In this manner,

classical and non-classical effects can be accounted for by increasing the order of the assumed

fields without the need for further ad-hoc formulations. In this manner, CUF and GUF are

powerful tools for benchmarking and comparing the accuracies of various theories.

2.3 Variable-stiffness laminates

The idea of tailoring the structural performance of composite laminates by spatially varying the

pointwise fibre orientations has been explored since the early 1970’s [98]. For example, early

work by Hyer and Lee [99] and Hyer and Charette [100] showed that such variable angle tow

(VAT) laminates can alleviate stress concentrations around holes by aligning the fibre paths

with the directions of principle stress.

In recent years, the use of fibre reinforced composites in primary aircraft structures has led

to increased interest in VAT technology. Numerous works have shown that tailoring the in-plane

stiffness over the plate planform allows prebuckling stresses to be redistributed to supported

regions, thereby increasing the critical buckling load [101–109]. Specifically, Gürdal et al. [102]

have shown that varying the stiffness of the panel perpendicular to the direction of applied end

compression results in greater improvements than varying the stiffness in the direction of loading.

In this manner, van den Brink et al. [110] improved the buckling performance of a composite

fuselage window section by 12% compared to an equivalent straight fibre laminate [110], whereas

Alhajahmad et al. [111] alleviated the pressure pillowing of fuselage sections. Furthermore,

Coburn et al. [112] investigated the concept of using VAT technology to design blade-stiffened

wing panels with greater critical buckling loads, and lower Poisson’s ratio mismatch between

base plate and stiffener foot. In a follow-up study, the researchers reduced the mass of a

representative blade-stiffened wing panel subject to static failure, buckling, compressive strain

and manufacturing constraints by 10% compared to a baseline design [113].

Recent results show that VAT plates with linear fibre variations can be designed to ex-

hibit smaller stiffness reductions in the postbuckling regime than their straight-fibre counter-

parts [114]. Furthermore, the optimum fibre orientations for increasing the buckling load are

similar to those for minimising the transverse displacement in the postbuckling regime [115]. In

this regard, an interesting application of variable-stiffness composites is in designing cylindri-

cal shells with stable postbuckling paths. It is well known in the engineering community that
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cylindrical shells are prone to collapse when loaded in axial compression beyond the buckling

load. A direct consequence of this postbuckling instability is an extreme sensitivity to initial ge-

ometric imperfections and loading conditions, which can lead to actual buckling loads less than

50% of analytical predictions from linear eigenvalue analyses [116]. White and Weaver [117]

have shown that this imperfection sensitivity can be effectively eliminated, thereby creating

stable, plate-like postbuckling responses by tailoring the fibre paths across the surface of the

cylindrical shell. The idea of introducing flat, plate-like behaviour in shells was also exploited

by applying the variable stiffness concept to decouple the linear membrane-bending coupling

that is characteristic of curved structures [118].
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Figure 2.4: Arrangements of steered fibre tows on a substrate manufactured using (a) the
AFP and (b) the CTS technique. Due to the finite thickness of tows, tow overlaps
or gaps (shown here) are inherently produced in AFP when shifting a tow perpen-
dicular to a reference path. In CTS, the tows can be tessellated without gaps or
overlaps. The figures have been reproduced and annotated from reference [119].

To date, the primary technology for manufacturing VAT laminates is Automated Fibre

Placement (AFP), a manufacturing process originally developed in the 1980’s to automate

lamination of straight fibre laminates. AFP uses a robotic fibre placement head that deposits

multiple pre-impregnated tows of “slit-tape” allowing cutting, clamping and restarting of single

tows. While the robotic head follows a specific fibre path, tows are heated shortly before

deposition and then compacted onto the substrate using a special roller. Due to the high

fidelity of current robot technology, AFP machines can provide high productivity and handle

complex geometries [120]. However, in AFP, steering is accomplished by bending the tows

in-plane, which leads to local fibre buckling on the inside radii of the curved tow, and thus

limits the steering radius of curvature [121]. Furthermore, if individual tows are placed next

to each other by shifting the reference path along a specific direction, tow gaps and overlaps

are inevitably required to cover the whole surface. Fayazbakhsh et al. [122] showed that the

presence of gaps may reduce the optimised buckling load by up to 15% compared to pristine
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designs.

To overcome the drawbacks of AFP machines the Continuous Tow Shearing (CTS) technique,

which uses shear deformation to steer fibres at the point of application, was developed [119]. By

tessellating tows on the substrate, this technique not only allows much tighter radii of curvature

but tow gaps and overlaps are also avoided (see Figure 2.4). In recent characterisation work,

Kim et al. [123] showed that CTS can produce impregnation quality similar to commercial pre-

preg. Most importantly for structural applications, CTS produces VAT laminates with fibre

paths curved more than ten times those available from conventional AFP machines without

producing tow cuts or resin pockets.

One feature of CTS is that in order to maintain the volume fraction of fibre the thickness of

a tow inherently increases as it is sheared. The relation between unsheared tow thickness t
(k)
0

and sheared tow thickness t(k) of layer k is

t(k) =
t
(k)
0

cos γ(k)
= t

(k)
0 sec γ(k) (2.31)

where γ(k) is the shearing angle of the tow at the point of application. Consequently, the

thickness of a ply may locally increase by a factor of three if the fibre tow is sheared through

an angle of 70◦. As the laminate is cured on a tool plate, one side of the laminate remains

flat, whereas the other resembles a curved panel. The effects of this asymmetric profile in

terms of local three-dimensional stress fields, buckling loads and postbuckling behaviour is

relatively unexplored. As part of this research project, the present author has published some

work on the buckling and postbuckling behaviour of these variable-stiffness, variable-thickness

panels [124, 125], and found that the structural behaviour is governed more by curved “shell-

like” than flat “plate-like” kinematics. The details of this work are not elucidated further herein,

and the interested reader is directed to references [124,125].

Variable-stiffness composites are a promising technology for improving the efficiency of en-

gineering structures due to the increased design space available for tailoring. To fully take

account of this enhanced design freedom, efficient optimisation strategies have to be devel-

oped to allow rapid iterative design in industrial settings. Due to its modelling versatility and

numerical robustness, most previous optimisation work has focused on designing AFP manu-

factured variable-stiffness panels using the Finite Element Method (FEM). Setoodeh et al. [103]

performed an optimisation study in FE where the fibre orientation angles at the nodes are

treated as design variables. A generalised reciprocal approximation was used that allowed the

maximisation of buckling load to be carried out at each node separately. The authors noted

that due to the non-convexity of the problem the optimisation results depend on the starting

points. Ijsselmuiden et al. [126] addressed the problem of non-convexity by using lamination

parameters as the design variables, and demonstrated buckling load improvements in excess of

100% compared to the optimum constant-stiffness designs. In a follow-up study, van Campen

et al. [127] proposed a methodology for converting the optimal lamination parameter distribu-

tion into realistic fibre paths, taking into account constraints on in-plane fibre path curvature.

Using a surrogate-based genetic algorithm (GA), Nik et al. [128] performed a multi-objective

optimisation of in-plane stiffness and buckling load of a laminated plate with curvilinear fibre
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paths. The researchers found that varying the fibre direction perpendicular to the direction

of compression can improve the buckling load of a flat plate with unconstrained lateral edges

by 116% compared to an optimised quasi-isotropic laminate. Later it was shown that gaps

degrade and overlaps improve the structural performance along the in-plane stiffness/buckling

load Pareto front, respectively [129].

The drawback of using the FEM in optimisation studies of VAT laminates is their computa-

tional cost. Even though buckling is a global structural phenomenon, improvements in buckling

load due to variable fibre paths arise as a result of local stress redistributions, and to capture

these accurately, local fibre variations need to be represented precisely using fine meshes. A

number of optimisation studies have implemented numerical solution techniques that reduce the

computational effort compared to FE solvers. Wu et al. [106] used a GA in combination with

the Rayleigh-Ritz solution technique, and this technique was extended by Coburn et al. [113] to

the study of blade-stiffened wing panels. Liu and Butler [108] performed a gradient-based mass-

minimisation strategy with buckling load constraints for VAT panels specifically manufactured

using the CTS technique. This study idealised the CTS panel as a flat plate with symmet-

ric thickness variation and therefore did not account for curved shell kinematics. Groh and

Weaver [125] used a differential quadrature implementation (see Section 2.4) of an asymptotic

numerical method to conduct a minimum-mass optimisation study on CTS panels, accounting

for the influence of the coupled fibre angle-thickness variations, as well as the ensuing geometric

effects of the asymmetric cross-sectional profile. Raju et al. [130] solved the prebuckling, buck-

ling and initial postbuckling problems of flat VAT plates using a similar differential quadrature

numerical scheme, and then minimised the end-shortening strain in the postbuckling regime for

a fixed compressive load. This latter work is based on the two-step optimisation framework

developed by Wu, Raju and Weaver [131]. In the first step, an optimum layup in lamination

parameter space, which is represented using B-splines, is sought via a gradient-based globally

convergent method of moving asymptotes. The convexity property of B-splines between in-

terpolation grid points means that the lamination parameters automatically satisfy predefined

feasibility constraints between discretisation points, even if the feasibility constraints are only

explicitly specified at the interpolation points. The second step then involves retrieving feasible

fibre orientations to match the lamination parameter space using a GA.

Whereas a number of works in the literature deal with global structural phenomena of tow-

steered composites laminates, such as vibration and buckling, relatively little work has been

conducted on localised higher-order effects in these laminates. Akhavan and Ribeiro [132] and

Akhavan et al. [133] investigated the natural modes of vibration, and nonlinear bending de-

flections and stresses of tow-steered composites. A Reddy-type third-order shear deformable

theory was solved via a p-version FEM approach, and a variety of different edge conditions,

including plates clamped along all four edges, were investigated. As mentioned in Section 2.2.1

and elucidated in detail in Chapter 3, the Reddy-type model used by these researchers leads

to static inconsistencies at the clamped boundaries. Furthermore, as a displacement-based the-

ory, the transverse shear stresses were derived by integrating the in-plane stresses in Cauchy’s

equilibrium equations via a post-processing step. In further work, Akhavan and Ribeiro [134]

extended the vibrational analysis into the nonlinear regime using a FSDT model. Akhavan and
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Ribeiro also point out that tow-steered laminates can be used effectively to tailor deflections

and stresses locally in order to improve damage resistance in certain applications. Coburn et

al. [112,113] accounted for the effect of transverse shear deformation on the buckling behaviour

of tow-steered, blade-stiffened wing panels. Akbarzadeh et al. [135] studied the effects of trans-

verse shear deformation on the vibrational and buckling response of moderately thick AFP

panels with gaps and overlaps using a Reddy-type third-order shear deformable theory. The

authors corroborate the findings of the present author published in [136] that transverse shear

deformation has a bigger impact on tow-steered than straight-fibre laminates. Yazdani and

Ribeiro [137] and Yazdani et al. [138] recently published LWT extensions of the earlier works by

Akhavan and co-workers cited above. Finally, Tornabene et al. [139] studied the free vibrations

of doubly curved, variable-stiffness shells using a generalised higher-order model implemented

via CUF using a local differential quadrature method. Overall, there is very little work in the

literature regarding detailed analyses of full 3D stress fields in tow-steered laminates and how

these could be tailored to optimise structures for specific objectives. Hence, the present work

aims to contribute research in this field.

2.4 Differential quadrature method

The Differential Quadrature Method (DQM) has been shown to be a fast, accurate and computa-

tionally efficient technique for solving the variable-coefficient, higher-order differential equations

for bending [136], buckling [107,124], and postbuckling of VAT plates [109,140] and cylindrical

shells [117,125,141]. Raju et al. [140] validated the accuracy of the DQM approach in modelling

variable-stiffness plates for free, simply-supported and clamped plate boundary conditions. In

comprehensive surveys by Viola, Tornabene and Fantuzzi, the DQM was effectively applied to

analyse the free vibration [142, 143] and static behaviour [144] of doubly-curved, straight-fibre

laminates based on a large number of higher-order shear deformation theories.

Differential quadrature (DQ) is a numerical discretisation technique proposed by Bellman et

al. [145], that approximates the partial derivative of a functional field with respect to a specific

spatial variable using a linear weighted sum of all the functional values in the domain. For

example, the nth partial derivative of function f(x) at the ith discretisation point is

∂nf(xi)

∂xn
= A

(n)
ij f(xj), i = 1, 2, . . . , Np (2.32)

where xi is the set of Np discretisation points in the x-direction, typically defined by the non-

uniform Gauss-Lobatto-Chebychev distribution, A
(n)
ij are the weighting coefficients of the nth

derivative, and repeated index j means summation from 1 to Np. The same technique is easily

extended to the remaining two spatial dimensions to compute mixed derivatives.

The key to applying DQ is finding the value of the weighting coefficients for any order

derivative. Bellman et al. [145] originally proposed two methods to obtain the weighting coef-

ficients. The first solves a set of linear algebraic equations of the Vandermonde form exactly,

thereby fitting a generalised Np − 1 polynomial through the Np grid points, and solving for

the polynomial coefficients by satisfying the linear constrained relation between all polynomi-

als. The second computes the weighting coefficients using Legendre polynomials, whereby the
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discretisation points are constrained to the roots of the nth order shifted Legendre polynomi-

als. In the former approach, the weighting coefficients cannot be determined robustly due to

ill-conditioning of the Vandermonde coefficient matrix when Np > 13, and in the latter, the

fixed grid distribution restricts the application of DQM to specific problems.

To overcome these deficiencies, Shu and Richard [146,147] proposed the Generalised Differ-

ential Quadrature (GDQ). The key insight in GDQ is that when the interpolating polynomials

are based on Lagrange polynomials, Lagrange trigonometric polynomials or the cardinal sine

functions, the coefficient matrix of the underlying set of interpolation equations is the identity

matrix, and therefore always invertible. In this manner, the interpolation coefficient matrix gk

for a Lagrangian polynomial basis [148] is given by

gk(x) =
m(x)

(x− xk)m(1)(xk)
, k = 1, 2, . . . , Np

where m(x) =

Np∏
j=1

(x− xj) and m(1)(xi) =

Np∏
k=1,k 6=i

(xi − xk) (2.33)

and this leads to the weighting coefficients of the derivatives A
(n)
ij ,

A
(1)
ij =

1

xj − xi

Np∏
k=1,k 6=i,j

xi − xk
xj − xk

for i 6= j and A
(1)
ii =

Np∑
k=1,k 6=i

1

xi − xk
. (2.34)

Subsequently, all higher order weighting coefficients are obtained by direct matrix multiplication,

i.e. [A(m)] = [A(1)][A(m−1)], with m = 2, 3, . . . , Np − 1 [149]. In this manner, any set of linear

differential equations can be written as a linear system of algebraic equations by replacing the

differential operators with the weighting matrix in Eq. (2.32). Thus, the unknown functional

values f(xi) at each grid point are found by solving the system of equations with the appropriate

boundary conditions. A comprehensive historical survey of the GDQ and detailed derivations

of the weighting coefficients are provided in the recent review by Tornabene et al. [150].

The advantage of the DQM is that the differential-algebraic relation of Eq. (2.32) allows

differential equations to be solved in the strong form, i.e. the differential relations are solved

exactly at each grid point, rather than in an average sense over the whole domain, as is the case

in the classic weak-form FEM based on the generalised Galerkin method of weighted residuals.

This means that both essential and natural boundary conditions are enforced along the boundary

points, and as a result local stress gradients towards boundaries are captured with relatively few

degrees of freedom. In the weak-form FEM, the natural boundary conditions are not enforced

explicitly but the solution generally converges to satisfy the natural boundary condition with

increasing mesh density.

Recently, a research group at the University of Bologna has shown the merits of a strong-

form FEM by discretising the computational domain into multiple GDQ elements, and enforcing

continuity of displacements and stresses at the interfaces [150]. The latter feature of stress con-

tinuity is especially valuable in post-processing accurate transverse stresses from Cauchy equi-

librium equations [151], whereas classic weak-form C0-continuous finite elements often require

smoothing algorithms [152]. This coupled DQM-FEM approach furthers the applicability of the
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classic GDQ from the relatively simple geometries typically analysed in research environments

to more general applications by taking advantage of the fidelity of the FEM to model arbitrarily

shaped domains. Furthermore, GDQ elements form the basis of a versatile hp-type FEM as

the interpolating polynomial order and number of elements in the mesh are easily adaptable

in numerical codes due to the existence of closed-form solutions for the GDQ weighting matrix

A
(n)
ij for any number of grid points.

As the DQM solves boundary value problems in the strong form, the appropriate displace-

ment and force boundary conditions must be satisfied to guarantee a unique and converged

solution. If there is only one boundary condition at each discretised boundary point, the ap-

plication of the boundary conditions is straightforward. However, when there is more than one

boundary condition at each boundary point, say a displacement and stress resultant condition

in plate bending problems, different methods for applying these dual boundary conditions are

possible, and a number of different techniques are discussed in the following.

The first method, introduced by Bert et al. [153], is the so called δ-technique. The appropri-

ate essential conditions are discretised directly at the boundary points, whereas the appropriate

natural conditions are applied at the adjacent points at a distance δ from the boundary. As the

natural condition is not directly implemented at the boundary point, the accuracy of the results

depends on the magnitude of δ. In general, the smaller the value of δ the more accurately the

natural condition is defined. On the other hand, if the mesh spacing δ is considerably smaller

than all others in the grid, then the DQM weighting coefficient may become ill-conditioned and

lead to oscillations in the results [149].

Wang and Bert [154] presented a method to overcome the drawbacks of the δ-technique. The

essential boundary condition is still implemented numerically, whereas the natural boundary

conditions are included in the DQM weighting coefficient matrices. This approach exactly

satisfies the natural condition and thus provides very accurate results for homogeneous boundary

conditions, for example, simply-supported boundary conditions. However, for non-homogeneous

conditions, the implementation is more cumbersome [155] and produces large errors for clamped

boundary conditions.

Shu and Du [156] substituted the essential boundary conditions directly into the governing

field equilibrium equations, whereas the natural conditions were discretised in DQM form. By

coupling the natural conditions of the two sets of opposite edges, the functional values at these

points can be found and then substituted back into the governing field equations. Although

this method efficiently implements the boundary conditions, it becomes very difficult and time

consuming to couple the natural conditions when all functional values in the computational

domain are present.

Du et al. [157, 158] introduced another methodology to overcome the difficulties of imple-

menting the dual boundary condition. They noted that the boundary conditions introduce a

redundancy in the equilibrium equations at the boundary grid points and the set of adjacent

grid points. Thus, they replaced the governing field equations at the boundary and the adjacent

grid points with the discretised boundary equations. In essence, this means that individual rows

in the DQ stiffness matrix, which pertain to governing field equations at the boundary points,

are replaced with new rows that represent the discretised boundary conditions. The advantage
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of this approach is its numerical versatility and ease of implementation, and also introduced the

notion of separating the domain into sets of internal and boundary points.

Shu and Du [159] then generalised this approach for the application to any set of boundary

equations by writing both the essential and natural conditions in algebraic DQM form. One set

of boundary conditions, typically the essential boundary conditions, are taken as the equations

for the boundary points themselves, whereas the second set of boundary conditions is taken for

the adjacent interior points. The computational domain is then split into an array of interior

points with functional unknowns Ui, and an array of boundary points with boundary unknowns

Ub. The governing field equations are discretised in DQM form at the interior points, whereas

boundary equations are discretised at the boundary points. As a result, there are two sets of

governing equations written in terms of the unknown arrays Ui and Ub,

Field equations: KiiUi +KibUb = Fi (2.35a)

Boundary conditions: KbiUi +KbbUb = Fb (2.35b)

where Kii and Kib are the stiffness matrices of the governing field equations multiplying the

arrays of internal and boundary unknowns, respectively, Kbi andKbb are the analogous stiffness

matrices for the boundary equations, and Fi and Fb are the arrays of externally applied loads

of the internal field and boundary equations, respectively. Therefore the functional values Ui

and Ub at the internal and boundary grid points can be found separately as follows:

Ui =
[
Kii −KibKbb

−1Kbi

]−1 ·
(
Fi −KibKbb

−1Fb
)

(2.36a)

Ub = Kbb
−1 · (Fb −KbiUi) . (2.36b)

Due to its general applicability, this latter approach by Shu and Du [159] is implemented for

all problems analysed herein. For these problems, the stiffness matrices Kii, Kib, Kbi and Kbb

are comprised of products of the DQ weighting matrices A
(n)
ij and laminate structural properties,

such as membrane and bending rigidities, and transverse shear and normal correction factors.
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Chapter 3

Displacement-Based Axiomatic Theories

Displacement-based axiomatic theories have received the most attention in the field of HOTs.

These theories are based on relatively intuitive ad-hoc displacement field assumptions from

which the governing field equations and boundary conditions are derived using the PVD. A

particular set of HOTs can be formulated using Eq. (2.24) and the different shear shape func-

tions in Table 2.1. One commonality of these theories is that Kirchhoff rotations w0,x and w0,y

feature explicitly in the displacement field assumptions. The inclusion of the Kirchhoff rotations

maintains an intuitive resemblance to the CLA displacement field, and is featured in the pio-

neering works of Ambartsumyan [35] as early as 1958. Later, Reddy [34] derived a third-order

theory with the same number of unknowns as FSDT by enforcing shear tractions to vanish at the

top and bottom surfaces. This variable condensation step invariably introduced the Kirchhoff

rotations into the displacement assumption. Reddy’s theory has received significant amount of

attention in the literature and is a popular benchmarking solution for new HOTs.

This chapter reveals certain static inconsistencies that arise in this particular class of

displacement-based HOT written in the form of Eq. (2.24). Section 3.1 shows that the es-

sential boundary condition of vanishing Kirchhoff rotations perpendicular to clamped edges

that arises in these theories, i.e. w0,x = 0 and w0,y = 0, is physically inaccurate as the rotation

can be non-zero in the presence of transverse shear deformation. Furthermore, this boundary

condition overconstrains the structure leading to underpredictions in transverse bending deflec-

tions and overpredictions of axial stresses. Finally, in these theories, the transverse shear force

derived from the constitutive equations erroneously vanishes at clamped edges.

Next, Section 3.2 shows that generalised higher-order theories written in the form of a

power series, as in Carrera’s [23] or the Generalized Unified Formulation [24], do not produce

this inconsistency. Indeed, the condition of vanishing transverse shear tractions at the top

and bottom surfaces should not be applied a priori in the displacement-based theories as the

transverse shear strains inherently vanish if the order of the theory is sufficient to capture all

higher-order effects. Finally, a metric for assessing the order of the expansion required to model

a particular laminate is developed, and a material- and geometry-dependent shear correction

factor is derived, that provides more accurate solutions of bending deflection than the classical

value of 5/6.

3.1 Static inconsistencies in higher-order theories

3.1.1 Definition of a baseline problem

As shown in Figure 3.1, the analysis presented herein pertains to a plate of thickness t, infinitely

wide in the lateral y-direction, with finite length L in the x-direction, and support conditions
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defined along the infinitely wide edges x = xA and x = xB, which are henceforth referred to

as the ends of the plate. This configuration is chosen to reduce the structural complexity by

enforcing all unknown fields to be functions of the x- and z-coordinates only, i.e. reducing the

analysis to a beam in plane strain. As a result, the discussion only deals with the essential

boundary condition δw0,x = 0 at edges x = xA and x = xB allowing for simpler derivations and

clearer discussion of the arguments made. However, without loss of generality, all comments

apply to two-dimensional plates and shells because the inclusion of the lateral displacement

field uy in the principle of virtual displacements introduces the essential boundary condition

δw0,y = 0 at clamped edges y = yA and y = yB.

x
L

z

y

Infinite Width

t
xA

xB

Figure 3.1: Schematic diagram of an infinitely wide plate with arbitrary boundary conditions
at the two supports x = xA and x = xB.

Consider an infinitely wide 0◦ orthotropic layer in cylindrical bending loaded by an arbitrary

transverse loading of magnitude q0. All analytical formulations presented are solved in the strong

form using an implementation of the DQM in Matlab. This pseudo-spectral numerical technique

was introduced in Section 2.4, and allows the governing differential equations to be converted

into algebraic ones by replacing the differential operators with weighting matrices that operate

on the functional unknowns at the grid points. Based on an initial mesh convergence study, a

non-uniform Chebychev-Gauss-Lobatto grid with 31 points was chosen. For all problems solved,

the deflection and stress results are stated as normalised quantities defined as follows:

w̄ =
E11t

2

q0L4

∫ t
2

− t
2

uzdz, σ̄x =
t2

q0L2
σx, τ̄xz =

1

q0
τxz. (3.1)

Therefore, absolute magnitudes of material properties play no role, only the orthotropy ratio

E11/G13, thickness to length ratio t/L, the Poisson’s ratios v12 = v13 = 0.25, and the boundary

conditions are of significance.

A 3D FEM model was implemented in the commercial software package Abaqus and used

as a benchmark to validate the results. For all cases considered, the plate was discretised

with 400 and 200 linear C3D8R elements along the axial length and through the thickness,

respectively. To enforce the plane-strain condition in the lateral direction, a single C3D8R

element was applied along the width and lateral expansion prevented. The ensuing model of
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80,000 elements yields converged results to within 0.1% for all results presented. All externally

applied transverse loading is split equally between the top and bottom surfaces of the plate in

order to minimise local through-thickness deformations.

3.1.2 First-order shear deformation theory

To begin, we analyse the cylindrical bending of the infinitely wide plate using FSDT. One

variant of FSDT is Mindlin’s plate theory in which the functional unknowns are the midplane

displacement u0, the transverse deflection w0 and the average rotation of the cross-section θ.

The average rotation of the cross-section may be assumed to include the Kirchhoff bending

rotation −w0,x and an average shear rotation γ. Thus, an alternative way of writing the in-

plane displacement assumption of Mindlin’s theory is to replace θ with −w0,x + γ. In the

following two examples, we investigate the effect this has on the governing field equations and

boundary conditions as derived in a variationally consistent manner from the PVD.

3.1.2.1 Mindlin plate

For cylindrical bending, Mindlin’s plate theory assumes axial and transverse displacements in

the following form:

ux = u0 + zθ (3.2a)

uz = w0. (3.2b)

Using the kinematic relations between strains and displacements, the axial strain εx and trans-

verse shear strain γxz are given by

εx = ux,x = u0,x + zθ,x (3.3a)

γxz = uz,x + ux,z = w0,x + θ. (3.3b)

The principle of virtual displacements states that a body is in equilibrium if the virtual work

done by the equilibrium forces when the body is perturbed by a virtual amount δu from the

true configuration u, is zero. With regard to an infinitely wide plate subjected to cylindrical

bending in the plane-strain condition, the virtual work done by the virtual displacement δu is

δΠ =

∫
V

(σxδεx + τxzδγxz) dV −
∫
qδw0dx−

∫
S2

(σ̂xδux + τ̂xzδw0) dS2 = 0 (3.4)

where q is the net transverse pressure on the top and bottom surfaces of the plate, and S2 is

the boundary surface on which the stresses σ̂x and τ̂xz are prescribed. Substituting the strains

of Eq. (3.3) into the PVD statement Eq. (3.4) yields

δΠ =

∫
V

[σxδ (u0,x + zθ,x) + τxzδ (w0,x + θ)] dV −
∫
qδw0dx −∫

S2

[σ̂xδ (u0 + zθ) + τ̂xzδw0] dS2 = 0. (3.5)
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The stresses σx and τxz are integrated through the thickness to define the stress resultants N ,

M and Q as follows:

N =

∫ t/2

−t/2
σxdz, M =

∫ t/2

−t/2
zσxdz, Q =

∫ t/2

−t/2
kτxzdz (3.6)

where N is the in-plane load per unit width, M is the bending moment per unit width, Q is the

transverse shear force per unit width and k is the pertinent shear correction factor. The shear

correction factor is needed to energetically account for the actual parabolic shear stress profile,

and is assumed to be equal to 5/6 [25]. Thus, Eq. (3.5) reduces to

δΠ =

∫
[Nδu0,x +Mδθ,x +Qδw0,x +Qδθ] dx−

∫
qδw0dx−

[
N̂δu0 + M̂δθ + Q̂δw0

]
xA,xB

= 0.

(3.7)

where xA and xB are the two supported ends of the infinitely wide plate. The governing field

equations and boundary conditions are derived using the calculus of variations. Integrating by

parts those variational terms that feature derivatives gives

δΠ = −
∫

[N,xδu0 +M,xδθ +Q,xδw0 −Qδθ] dx−
∫
qδw0dx +[(

N − N̂
)
δu0 +

(
M − M̂

)
δθ +

(
Q− Q̂

)
δw0

]
xA,xB

= 0. (3.8)

The governing field equations and boundary conditions are derived from the Euler-Lagrange

equations of the integral expressions and the expression evaluated at xA and xB, respectively.

These governing field equations are

δu0 : N,x = 0 (3.9a)

δθ : M,x −Q = 0 (3.9b)

δw0 : Q,x − q = 0 (3.9c)

whereas the essential and natural boundary conditions are

δu0 = 0 or N − N̂ = 0 (3.10a)

δθ = 0 or M − M̂ = 0 (3.10b)

δw0 = 0 or Q− Q̂ = 0. (3.10c)

Modelling a clamped boundary condition in Mindlin’s plate theory is relatively straightfor-

ward. Assuming that both ends xA and xB are rigidly built-in, then the in-plane displacement,

transverse displacement and plate cross-sectional rotation are zero. Thus,

u0 = θ = w0 = 0 (3.11)

Note, this boundary condition does not specify that the rotational component w0,x = 0 at

the ends xA and xB. In fact, we may have a non-zero value of w0,x due to the presence of

transverse shearing. Furthermore, we know from basic equilibrium that a non-zero shear force
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Q is required at the clamped edges. Using the definition of Q in Eq. (3.6) with the transverse

shear constitutive equation and kinematics, we have

Q =

∫ t/2

−t/2
kτxzdz =

∫ t/2

−t/2
kGxzγxzdz =

∫ t/2

−t/2
kGxz (w0,x + θ) dz. (3.12)

Thus, for a clamped edge with θ = 0 the value of w0,x defines the magnitude of the shear force

at the support. In Kirchhoff’s plate theory, the shear rotation is assumed to be zero, such that

the clamped boundary condition needs to be enforced by setting w0,x = 0. Physically, this

boundary condition is reached asymptotically as the thickness to length ratio t/L of the plate

approaches zero. Because all plates have finite thickness, and thus finite shear deformation,

imposing the condition w0,x = 0 is physically incorrect in a shear-deformable theory and leads

to inaccuracies as the thickness increases.

3.1.2.2 Alternative first-order shear theory

The observations of the previous section are compared to a theory where the average rotation

of the cross-section θ is replaced by a sum of the Kirchhoff rotation w0,x and the shear rotation

γ. Under these circumstances the displacement field is given by

ux = u0 + z (γ − w0,x) (3.13a)

uz = w0 (3.13b)

which leads to the new strain field

εx = ux,x = u0,x + z (γ,x − w0,xx) (3.14a)

γxz = uz,x + ux,z = γ. (3.14b)

Performing the same variational analysis outlined in the previous section, using the PVD defi-

nition Eq. (3.4) and the new strain field Eq. (3.14), results in

δΠ = −
∫

[N,xδu0 +M,xδγ +M,xxδw0 −Qδγ] dx−
∫
qδw0dx +[(

N − N̂
)
δu0 +

(
M − M̂

)
δγ +

(
M̂ −M

)
δw0,x +

(
M,x − Q̂

)
δw0

]
xA,xB

= 0 (3.15)

where N , M and Q are as previously defined in Eq. (3.6). The governing field equations derived

from the integral expressions are

δu0 : N,x = 0 (3.16a)

δγ : M,x −Q = 0 (3.16b)

δw0 : M,xx + q = 0 (3.16c)

whereas the essential and natural boundary conditions at xA and xB are

δu0 = 0 or N − N̂ = 0 (3.17a)
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δγ = 0 or M − M̂ = 0 (3.17b)

δw0,x = 0 or M̂ −M = 0 (3.17c)

δw0 = 0 or M,x − Q̂ = 0. (3.17d)

A number of striking observations can be made about this system of equations. First, the third

equilibrium equation Eq. (3.16c) is the same as the governing field equation of Kirchhoff’s theory,

and can be derived from Mindlin’s equilibrium equations by combining Eq. (3.9b) and (3.9c).

This means that in the present theory, the second equilibrium equation Eq. (3.16b) is already

incorporated in the third equilibrium equation Eq. (3.16c). This result suggests that Eq. (3.16b)

is redundant and can be eliminated, which reverts the equations back to Kirchhoff’s classical

theory.

The same redundancy is also shown in the boundary conditions. The natural boundary

conditions in Eq. (3.17b) and (3.17c) are the same. Solving the boundary value problem of

differential equilibrium equations (3.16) in a mathematically consistent manner requires four

boundary conditions at each end, i.e. eight boundary conditions in total. For simply supported

boundary conditions, with M = 0 at either end, we thus only have six boundary conditions to

apply due to this redundancy. It is of course still possible to solve the governing field equations

by assuming mode shapes for u0, w0 and γ that satisfy the boundary conditions. However, the

problem in itself is not mathematically well-determined.

In fact, if we consider clamped boundary conditions we fail to solve the problem at all. If

both xA and xB are both rigidly built-in, the boundary conditions u0 = w0 = 0 need to be

satisfied. The bending moment M is non-zero at both ends, such that a value for both γ and

w0,x needs to be prescribed on the boundary. For a generic loading q, the values of both γ and

w0,x are unknown as both γ and w0 are variables of the theory. Thus, the only condition we

can apply to adequately constrain the boundary value problem is γ = w0,x = 0 if we are not to

prescribe an arbitrary non-zero value to either of these variables.

This statement causes two anomalies. First, we know that w0,x is in fact non-zero at the

boundary due to the presence of transverse shearing. Second, if γ(xA, xB) = 0 then the trans-

verse shear force vanishes at the boundary. Hence,

QxA,xB =

∫ t/2

−t/2
kτxz(xA, xB)dz =

∫ t/2

−t/2
kGxzγxz(xA, xB)dz =

∫ t/2

−t/2
kGxzγ(xA, xB)dz = 0

(3.18)

where the shear strain γxz = γ according to Eq. (3.14b). However, from the equilibrium of

bending moments and transverse shear forces we know that the shear force is finite at the

supports xA and xB.

3.1.3 Higher-order theories featuring Kirchhoff rotation

In FSDT, the presence of the Kirchhoff rotation w0,x introduces two critical inconsistencies. The

argument presented in the previous section is now extended to higher-order theories. Reddy’s

third-order theory is used as an example but the observations apply to any higher-order theory

that is written in the general form of Eq. (2.24). These include, but are not limited to, the
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3.1. Static inconsistencies in higher-order theories

theories of Ambartsumyan [35], Touratier [37], Soldatos [38] and Karama [39].

3.1.3.1 Reddy’s third-order theory

To derive Reddy’s third-order theory we start with a cubic expansion of the in-plane displace-

ment field,

ux = u0 + zθ + z2ζ + z3ξ (3.19a)

uz = w0 (3.19b)

where θ is the average rotation of the cross-section, and ζ and ξ are higher-order rotations.

The tractions at the top and bottom surfaces z = ±t/2 are known a priori and this boundary

condition is thus enforced in the in-plane displacement field. The transverse shear from the

kinematic relations is given by

γxz = ux,z + uz,x = (w0,x + θ) + 2zζ + 3z2ξ. (3.20)

Assuming zero shear tractions at the top and bottom surfaces z = ±t/2, the transverse shear

strain must vanish accordingly. Hence,

γxz (±t/2) = 0⇒ (w0,x + θ)± tζ +
3

4
t2ξ = 0

∴ ζ = 0 and ξ = − 4

3t2
(w0,x + θ) . (3.21)

Thus, the second-order rotation ζ is eliminated from the in-plane displacement expansion

Eq. (3.19a) due to symmetry, and the third-order rotation ξ is replaced by a term involv-

ing the average rotation θ and Kirchhoff rotation w0,x. The modified displacement field reads

ux = u0 + zθ − 4

3t2
z3 (w0,x + θ) (3.22a)

uz = w0 (3.22b)

and the strain field is given by

εx = u0,x + zθ,x −
4

3t2
z3 (w0,xx + θ,x) (3.23a)

γxz = (θ + w0,x)

(
1− 4

t2
z2

)
. (3.23b)

The governing field equations and boundary conditions are derived by substituting the new

strain field Eq. (3.23) into the PVD of Eq. (3.4). Thus,

δΠ = −
∫

[N,xδu0 +M,xδθ + c1P,xxδw0 − c1P,xδθ +Q,xδw0 −Qδθ − c2R,xδw0 + c2Rδθ] dx

−
∫
qδw0dx+

[(
N − N̂

)
δu0 +

(
M − M̂ − c1P + c1P̂

)
δθ +
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(
Q− Q̂− c2R+ c1P,x

)
δw0 +

(
c1P̂ − c1P

)
δw0,x

]
xA,xB

= 0 (3.24)

where c1 =
4

3t2
and c2 =

4

t2
, and N and M are as previously defined in Eq. (3.6). The higher-

order moment P , transverse shear force Q and higher-order transverse shear force R are given

by

P =

∫ t/2

−t/2
z3σxdz, Q =

∫ t/2

−t/2
τxzdz, R =

∫ t/2

−t/2
z2τxzdz. (3.25)

Note that the shear correction factor k is no longer required in the definition of the transverse

shear force Q because a parabolic shear strain profile is assumed.

The governing field equations and boundary conditions are the Euler-Lagrange equations of

the virtual displacement statement Eq. (3.24). The field equations from the integral expressions

are

δu0 : N,x = 0 (3.26a)

δθ : M,x − c1P,x −Q+ c2R = 0 (3.26b)

δw0 : c1P,xx +Q,x − c2R,x + q = 0 (3.26c)

and the boundary conditions at the ends xA and xB are

δu0 = 0 or N − N̂ = 0 (3.27a)

δθ = 0 or M − M̂ − c1

(
P − P̂

)
= 0 (3.27b)

δw0,x = 0 or P − P̂ = 0 (3.27c)

δw0 = 0 or c1P,x +Q− c2R− Q̂ = 0. (3.27d)

First, note that the force boundary condition on the higher-order moment P in Eq. (3.27c)

also features in Eq. (3.27b). Thus, we face the same problem of boundary condition uniqueness

and conditions of a well-defined boundary value problem described in the previous section. For

simply supported boundary conditions,

w0 = N = M = P = 0 at xA and xB (3.28)

and it is possible to define mode shapes that satisfy the boundary conditions exactly, and then

solve for the unknown coefficients. However, when solving a problem with built-in supports,

the situation is more difficult. The conditions

u0 = w0 = θ = 0 at xA and xB (3.29)

are readily applied at either end as there can be no in-plane movement u0, no transverse

deflection w0 and no average rotation θ of the cross-section. This leaves the third boundary

condition Eq. (3.27c), where either the higher-order moment P or the Kirchhoff rotation w0,x

need to be defined. Both the bending moment M and higher-order moment P are non-zero at

the supports because of a unique axial stress σx at this location. Furthermore, for a generic
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Figure 3.2: Comparison of transverse deflection w̄ for an infinitely wide plate clamped at two
ends, t/L = 1 : 8, E11/G13 = 50, and loaded by a uniformly distributed pressure.
A half-span plot is shown with the symmetry condition at x/L = 0.5.

distributed transverse load q, the value of P at the supports is not known a priori. Therefore,

we are forced to define a displacement boundary condition w0,x to sufficiently constrain the

problem. In his textbook “Mechanics of Laminated Composite Plates and Shells” [160, Eq.

11.5.17, p. 704], Reddy applies the following boundary conditions

u0 = w0 = w0,x = θ = 0 (3.30)

for clamped edges. The same boundary condition is applied in references [39, 161–165] for

various other HOTs as well. As described in Section 3.1.2, the boundary condition w0,x = 0 in

Eq. (3.30) is physically inaccurate due to the presence of finite transverse shearing at a clamped

edge.

Consider, for example, the transverse deflection plots of an infinitely wide plate with thick-

ness to length ratio t/L = 1 : 8 and orthotropy ratio E11/G13 = 50, clamped at both ends

and loaded with a uniformly distributed pressure. Figure 3.2 shows the discrepancy of the

rotation at the support when compared to Mindlin’s theory and 3D FEM. Whereas w0,x is

non-zero in Mindlin’s theory and in 3D FEM due to the presence of transverse shearing, the

rotation w0,x is forced to vanish in Reddy’s theory. The plot shows that the boundary condi-

tion w0,x = 0 overconstrains the structure leading to overall stiffer behaviour. Mindlin’s theory

overpredicts the 3D FEM solution because higher-order effects are important for the chosen

configuration. Specifically, Mindlin’s theory does not capture the “stress-channelling” of axial

stress σx towards the surfaces, thereby underpredicting the maximum stress and overpredicting

the transverse deflection.

Furthermore, enforcing boundary condition Eq. (3.30) causes the transverse shear force Q
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and higher-order transverse shear force R to erroneously vanish at the supports,

[
QxA,xB RxA,xB

]
=

∫ t/2

−t/2

[
1 z2

]
τxz(xA, xB)dz =

∫ t/2

−t/2
Gxz

[
1 z2

]
γxz(xA, xB)dz

=

∫ t/2

−t/2
Gxz

[
1 z2

] [
{θ(xA, xB) + w0,x(xA, xB)}

(
1− 4

t2
z2

)]
dz = 0

(3.31)

as w0,x = θ = 0 at xA and xB.

Thus, at a clamped edge, Reddy’s third-order theory leads to an inconsistency between the

transverse shear forces obtained from constitutive and equilibrium equations. To overcome this

inconsistency, a non-zero value of w0,x could be defined. Alternatively, a boundary condition on

w0,x could be left undefined. The former is not possible as the slope w0,x depends on the loading

condition, plate dimensions and material properties, and is thus a quantity to be determined

as a result of solving the problem. The latter option is infeasible as this additional boundary

condition is required to properly define the boundary value problem.

3.1.3.2 Transverse shear force in Reddy’s third-order theory

Consider a cantilevered, infinitely wide plate of thickness to length ratio t/L = 1 : 10 and

orthotropy ratio E11/G13 = 25 subject to a transverse shear traction q0 at the free end. From

simple equilibrium of forces and moments, we know that the shear force must be constant

along the length of the plate. The spanwise distribution of the transverse shear force from the

constitutive equation and equilibrium condition, as derived from Reddy’s third-order theory, is

shown in Figure 3.3a. It is apparent that at the built-in support x = 0 there is a discrepancy

between the constitutive shear force Q of Eq. (3.25) and the shear force V = M,x derived from

equilibrium. Furthermore, the constitutive shear force can be seen to converge from zero to

the correct value of unity some distance away from the built-in support. Figure 3.3b shows

an equivalent plot for an infinitely wide plate that is clamped at both ends and loaded by a

uniformly distributed pressure of magnitude q0. In this case, the constitutive shear force vanishes

at both supports and converges to the linearly varying distribution derived from equilibrium

some distance away from the supports.

In both Figures 3.3a and 3.3b, the convergence distance depends on the magnitude of the

thickness to length ratio t/L and the orthotropy ratio E11/G13 as these ratios are the governing

factors of transverse shear flexibility. The variation of the constitutive shear force along the

length of the cantilevered plate for different thickness to length ratios t/L is shown in Figure 3.4a,

and that for different orthotropy ratios E11/G13 is shown in Figure 3.4b. As t/L and E11/G13

increase, so does the distance required for convergence. For t/L → 0 and E11/G13 → 0, the

convergence distance tends to zero because the plate approaches the idealised condition of pure

bending with w0,x = 0. However, this trend is asymptotic, such that the transverse shear force

at the support condition is always equal to zero for any finite thickness to length ratio t/L

and orthotropy ratio E11/G13. In Mindlin’s plate theory, no constraint is placed on w0,x at

the boundary, and therefore results in the same transverse shear force along the length of the

infinitely wide plate for both the constitutive and equilibrium derivations.
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Figure 3.3: Comparison of normalised transverse shear force along the length of an infinitely
wide plate with t/L = 1 : 10 and E11/G13 = 25, as derived from constitutive and
equilibrium equations of Reddy’s third-order theory, for two different boundary
conditions.
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Figure 3.4: Variation of the constitutive transverse shear force of Reddy’s third-order theory
along the length of a cantilevered plate for different thickness to length ratios t/L
and different orthotropy ratios E11/G13.
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Table 3.1: Normalised transverse displacement w̄ of 3D FEM results compared to Mindlin’s
(FSDT), Reddy’s third-order (RTOT), generalised third-order (3HOT) and fifth-
order (5HOT) solutions for an infinitely wide plate clamped at two ends and loaded
by a uniformly distributed pressure.

Normalised transverse deflection w̄ at x/L = 0.5

t

L

E11

G13
3D FEM FSDT (%) RTOT (%) 3HOT (%) 5HOT (%)

1:100

25

0.0315 0.27 0.26 0.27 0.27
1:50 0.0326 0.13 0.06 0.10 0.10
1:20 0.0404 0.41 -0.39 0.09 0.12
1:10 0.0678 1.32 -2.51 -0.25 -0.10
1:5 0.1772 2.26 -9.44 -1.49 -1.00

Table 3.2: Normalised transverse displacement w̄ of 3D FEM results compared to Mindlin’s
(FSDT), Reddy’s third-order (RTOT), generalised third-order (3HOT) and fifth-
order (5HOT) solutions for an infinitely wide plate clamped at two ends and loaded
by a uniformly distributed pressure.

Normalised transverse deflection w̄ at x/L = 0.5

t

L

E11

G13
3D FEM FSDT (%) RTOT (%) 3HOT (%) 5HOT (%)

1:10

12.5 0.0496 0.56 -1.28 -0.19 -0.12
25 0.0678 1.32 -2.51 -0.25 -0.10
50 0.1036 2.51 -4.56 -0.37 -0.10
100 0.1738 4.22 -7.70 -0.62 -0.12
200 0.3113 6.39 -12.44 -1.06 -0.16
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The physically incorrect boundary condition w0,x = 0 also influences the bending deflec-

tion and stress results as a whole. Because the plate can shear at the clamped boundary, the

boundary condition w0,x = 0 overconstrains the structure and leads to unconservative trans-

verse deflection results. The inaccuracy increases with increasing thickness to length ratio t/L

and increasing orthotropy ratio E11/G13. A comparison of the normalised transverse midspan

deflection w̄ of Mindlin’s first-order (FSDT) and Reddy’s third-order theory (RTOT) against

the high-fidelity 3D FEM solution for different thickness to length ratios t/L is shown in Ta-

ble 3.1. The same comparison for varying orthotropy ratio E11/G13 is shown in Table 3.2. The

normalised solution of 3D FEM is stated explicitly and the errors in FSDT and RTOT are given

as percentages. The solutions are calculated for an infinitely wide plate clamped at both ends

and loaded by a uniformly distributed pressure q0 across the span L.

Table 3.1 shows that the accuracy of w̄ for FSDT and RTOT are similar for small values

of t/L. However, as the thickness increases, Reddy’s third-order theory is less accurate than

Mindlin’s first-order theory. The results show that RTOT always leads to an underprediction of

w̄ compared to 3D FEM, which arises due to the stiffening effect of w0,x = 0 at the boundary.

For FSDT, the error is always on the conservative side. Furthermore, for t/L = 1 : 5 the 9.44%

error of RTOT is more than three times the magnitude of the FSDT error. Finally, the w̄

results in Table 3.2 show similar trends of increasing inaccuracy for both FSDT and RTOT as

the orthotropy ratio E11/G13 increases, with the error of RTOT generally two times greater

than that of FSDT.

The errors in FSDT may largely be attributed to neglecting higher-order effects that become

important as t/L and E11/G13 increase. RTOT on the other hand captures higher-order effects

due to the cubic displacement formulation, and the errors stem largely from the erroneous

boundary condition w0,x = 0. In Section 3.2.4, t/L and E11/G13 are combined into a single

non-dimensional metric that governs the structural behaviour of the plate.

3.2 General higher-order theories

Based on the previous findings, a formulation is sought that:

1. Captures higher-order effects.

2. Allows transverse shear stresses to vanish at the surfaces.

3. Gives a meaningful, non-zero shear force at a clamped edge, i.e. the Kirchhoff rotation

w0,x does not appear in the axial displacement field.

To achieve this, a general higher-order theory following Carrera et al. [23, 96,97] is presented.

3.2.1 Model derivation

The most expedient way to achieve the conditions outlined above is by a natural extension

to Mindlin’s first-order theory, i.e. the axial displacement field ux is expanded as a linear
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combination of a power series in z and an unknown displacement field U . Hence,

ux = u0 + zθ + z2ζ + z3ξ + · · · =
[
1 z z2 z3 . . .

]{
u0 θ ζ ξ . . .

}>
= f(z)U (3.32a)

uz = w0 (3.32b)

where θ is the average rotation of the cross-section, and ζ and ξ are linear and parabolic distor-

tion variables of the cross-section, respectively. Row vector f(z) is the deformation function of

the cross-section, whereas column vector U contains all displacement variables. The zeroth and

even exponent terms of z pertain to stretching deformation variables, whereas the odd exponent

terms of z pertain to bending terms.

The generalised strain fields are given by

εx = fU,x (3.33a)

γxz = w0,x + f ,zU . (3.33b)

The transverse shear strain is not forced to vanish at the top and bottom surfaces explicitly.

The transverse shear strain and stress profiles are of higher-order but are free to “float” away

from zero at the surfaces, and in doing so, provide an indication of modelling error. In the

following, it is shown that the transverse shear strain automatically vanishes at the surfaces

if the order of the expansion adequately captures the structural behaviour. The greater the

value of the thickness to length ratio t/L and orthotropy ratio E11/G13, the more terms in the

expansion are required to achieve this. Thus, enforcing the transverse shear strain to vanish a

priori, as in RTOT, is not necessary and the inconsistency due to the w0,x term is prevented.

Substituting the new strain field of Eq. (3.33) into the PVD statement of Eq. (3.4) gives

δΠ =

∫
V

[
σxfδU,x + τxzδ

(
w0,x + f ,zU

)]
dV −

∫
qδw0dx−

∫
S2

[σ̂xfδU + τ̂xzδw0] dS2 = 0.

Defining the following stress resultants

F> =

∫ t/2

−t/2
σxfdz, T > =

∫ t/2

−t/2
τxzf ,zdz, Q =

∫ t/2

−t/2
τxzdz, (3.34)

where > is the transpose operator, and then integrating by parts results in

δΠ = −
∫ [
F>,xδU +Q,xδw0 − T >δU

]
dx−

∫
qδw0dx+[(

F> − F̂>
)
δU +

(
Q− Q̂

)
δw0

]
xA,xB

= 0. (3.35)

Note, that no shear correction factor is required for T or Q due to the presence of higher-

order terms. The generalised set of governing field equations is derived by setting the integral

expressions to zero. Hence,

δU : F>,x − T > = 0 (3.36a)

δw0 : Q,x + q = 0 (3.36b)
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Table 3.3: Normalised axial stress σ̄x of 3D FEM results compared to Mindlin’s (FSDT),
Reddy’s third-order (RTOT), generalised third-order (3HOT) and fifth-order
(5HOT) solutions for an infinitely wide plate clamped at two ends and loaded
by a uniformly distributed pressure.

Normalised axial stress σ̄x at x/L = 0.5

t

L

E11

G13
3D FEM FSDT (%) RTOT (%) 3HOT (%) 5HOT (%)

1:100

25

0.2484 0.66 0.76 0.76 0.76
1:50 0.2496 0.17 0.57 0.57 0.55
1:20 0.2550 -1.97 0.49 0.49 0.49
1:10 0.2740 -8.76 0.39 0.39 0.33
1:5 0.3459 -27.73 1.25 0.32 -0.25

The essential and natural boundary conditions at xA and xB are

δU = 0 or F> − F̂> = 0 (3.37a)

δw0 = 0 or Q− Q̂ = 0. (3.37b)

The equilibrium equations corresponding to δU are hierarchical and the total number depends

on the order of the axial displacement expansion. The transverse equilibrium equation corre-

sponding to δw0, on the other hand, is always fixed. At a clamped boundary, all displacement

variables and the transverse deflection are equal to zero, i.e. U(xA, xB) = w0(xA, xB) = 0. This

generalised formulation results in a finite transverse shear force at the support. Hence,

QxA,xB =

∫ t/2

−t/2
Gxz

[
w0,x(xA, xB) + f ,zU(xA, xB)

]
dz =

∫ t/2

−t/2
Gxzw0,x(xA, xB)dz. (3.38)

Also note that the shear stress at a clamped edge τxz = Gxzw0,x is independent of the higher-

order field f ,z. Therefore this theory assumes that the whole cross-section is sheared by the same

amount and the shear stress τxz at the built-in support is constant and non-zero throughout

the whole thickness.

3.2.2 Comparison with Mindlin’s first-order and Reddy’s third-order theo-

ries

Tables 3.1 and 3.2, previously used to compare the results of normalised transverse deformation

w̄ at the midspan for FSDT and RTOT, also include the results of cubic (3HOT) and quintic

(5HOT) generalised theories. As expected, the fifth-order theory provides slightly more accu-

rate results than the third-order theory for both increasing thickness to length ratio t/L and

orthotropy ratio E11/G13. Also, both 3HOT and 5HOT considerably improve on the accuracy

of RTOT as the inconsistency due to the w0,x boundary condition is removed. The difference

is especially striking for E11/G13 = 200 in Table 3.2, where the error of 3HOT and 5HOT are

one and two orders of magnitude smaller than RTOT, respectively.

The maximum normalised axial stress σ̄x at the midspan of the plate, as predicted by FSDT,
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3.2. General higher-order theories

Table 3.4: Normalised axial stress σ̄x of 3D FEM results compared to Mindlin’s (FSDT),
Reddy’s third-order (RTOT), generalised third-order (3HOT) and fifth-order
(5HOT) solutions for an infinitely wide plate clamped at two ends and loaded
by a uniformly distributed pressure.

Normalised axial stress σ̄x at x/L = 0.5

t

L

E11

G13
3D FEM FSDT (%) RTOT (%) 3HOT (%) 5HOT (%)

1:10

12.5 0.2619 -4.53 0.25 0.25 0.25
25 0.2740 -8.76 0.39 0.39 0.33
50 0.2978 -16.06 0.77 0.71 0.59
100 0.3420 -26.90 2.42 1.48 0.90
200 0.4165 -39.97 8.14 2.01 1.47

RTOT, 3HOT and 5HOT, is compared against 3D FEM in Table 3.3 for increasing thickness

to length ratio t/L. FSDT significantly underpredicts the maximum stress for large t/L values.

This behaviour is to be expected as the linear stress assumption cannot capture the higher-order

“stress-channelling” effect that occurs for large t/L ratios. Even though the boundary condition

on w0,x in RTOT leads to inaccurate transverse deflection results, the stress solutions maintain

good accuracy for all t/L presented. Thus, it seems that strain and stress results, being based

on derivatives of the displacements, are not affected to the same degree as the displacements

themselves. Nevertheless, both 3HOT and 5HOT always outperform RTOT.

A similar trend is shown in Table 3.4 for increasing orthotropy ratio E11/G13. As the

orthotropy ratio increases, the plate becomes relatively more flexible in transverse shear. As

a result, the distortion of the plate’s cross-section, and by extension, the higher-order “stress-

channelling” effects increase. Thus, the stress profile through the thickness transitions from

predominantly linear, to cubic, to quintic and to further higher-order fields. Both 3HOT and

5HOT considerably improve upon FSDT and RTOT, resulting in nominal overall errors. For

increasing E11/G13, the axial stress σ̄x from RTOT shows errors up to 8%. This is more than

four times the percentage error magnitude of 3HOT and 5HOT.

3.2.3 Hierarchical modelling

One of the characteristics of RTOT is that the transverse shear stresses are forced to vanish

at the top and bottom surfaces. However, enforcing this constraint introduces the Kirchhoff

rotation w0,x into the formulation and leads, as we have seen, to underpredictions of transverse

displacement and vanishing of the transverse shear force at clamped boundaries. In 3HOT and

5HOT, the transverse shear strain is not enforced to vanish at the top and bottom surfaces.

Nevertheless, if the chosen order of the theory adequately captures the structural behaviour,

the transverse shear stress naturally disappears at the top and bottom surfaces.

As an example, consider an infinitely wide plate of thickness to length ratio t/L = 1 : 10

and orthotropy ratio E11/G13 = 50. The plate is simply supported at either end and loaded

by a sinusoidally distributed pressure q = q0 sin
(πx
L

)
. This loading configuration is chosen as

it allows the through-thickness results to be compared to Pagano’s 3D elasticity solution [20].
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3.2. General higher-order theories

Under this loading condition, and due to the midplane symmetry of the layer, the in-plane

stretching displacements u0, ζ, etc. in Eq. (3.32) vanish.

In Figure 3.5a, the normalised axial stress σ̄x at the midspan of the plate is plotted through

the thickness for the Pagano, FSDT, 3HOT and 5HOT solutions. The linear profile of FSDT

fails to capture the higher-order field but both the 3HOT and 5HOT are accurate throughout

the whole cross-section. As a result, the normalised transverse shear stress profile τ̄xz at the

support x = 0 is accurately predicted by both 3HOT and 5HOT (Figure 3.5b). For 5HOT, the

transverse shear stress vanishes exactly at the top and bottom surfaces, whereas for 3HOT, a

small residual remains.

Now consider an infinitely wide plate t/L = 1 : 8 and E11/G13 = 200 under the same loading

conditions. Figure 3.6a shows that the “stress-channelling” of σ̄x towards the outside surfaces

is more pronounced. Whereas 5HOT remains close to Pagano’s solutions throughout the whole

thickness, there are some inaccuracies for 3HOT. Because fifth-order effects are significant for

this plate configuration, there is a considerable residual in τ̄xz at the surfaces for 3HOT, whereas

the solution for 5HOT remains accurate throughout and vanishes on the surfaces (Figure 3.6b).

One possible hypothesis is that this behaviour is a direct result of the minimisation tech-

nique employed in the PVD. In essence, each theory accounts for the average total potential

energy through the volume of the body (volume integral) as permitted by the order of the

theory. If the true 3D behaviour of the structure is governed by higher-order behaviour, as

in Figure 3.6, the linear profile of FSDT must underpredict in some parts and overpredict in

others to arrive at a similar magnitude of total potential energy. The same argument holds

for the transverse shear stress of 3HOT in Figure 3.6b. The quadratic transverse shear stress

expansion of 3HOT cannot model the actual higher-order behaviour accurately. Thus, the shear

stress magnitude is overpredicted at the surfaces and at the midplane, and underpredicted at

other points throughout the cross-section. This effect is eliminated in 5HOT as enough degrees

of freedom are included in the model to accurately capture the higher-order stress profile.

The adequacy of a higher-order model can be ascertained by analysing the residual of the

transverse shear stress at the surfaces. The energy associated with this residual is given by

Rts =
1

2
τxzγxz

∣∣∣∣
z=t/2

. (3.39)

If this residual is three orders of magnitude less than the average transverse shear energy

through the thickness, then the error associated with this residual is assumed to be negligible.

Consequently, the order of the theory is deemed adequate if

Ets = max
x∈[0,L]

 τxzγxz |z=t/2
1
t

∫ t/2
−t/2 τxzγxzdz

 = O(10−3). (3.40)

The values of Ets from Eq. (3.40) for the two cases in Figures 3.5 and 3.6 are shown in Ta-

ble 3.5. The tabulated results support the qualitative observations made regarding Figure 3.6b

that 3HOT inadequately captures the higher-order effects in the plate with t/L = 1 : 8 and

E11/G13 = 200. This result has been underlined in the table.
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Figure 3.5: Pagano’s normalised axial and transverse shear stresses of a simply supported,
infinitely wide plate with t/L = 1 : 10 and E11/G13 = 50, compared to first-order,
third-order and fifth-order theories.
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Figure 3.6: Pagano’s normalised axial and transverse shear stresses of a simply supported,
infinitely wide plate with t/L = 1 : 8 and E11/G13 = 200, compared to first-order,
third-order and fifth-order theories.
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3.2. General higher-order theories

Table 3.5: Transverse shear residual Ets for 3HOT and 5HOT calculated for two different
load cases. The 3HOT case where Ets is greater than the acceptable tolerance is
underlined.

Residual Ets
t

L

E11

G13
3HOT 5HOT

1:10 50 1.17× 10−3 1.72× 10−7

1:8 200 3.28× 10−2 1.44× 10−4

3.2.4 Asymptotic expansion

The previous sections showed that the structural behaviour of an infinitely wide plate in cylin-

drical bending is a function of both the orthotropy ratio E11/G13 and the thickness to length

ratio t/L. It is possible to combine these two factors into a single metric which governs the

structural behaviour of the plate.

Consider an infinitely wide, simply supported plate as depicted in Figure 3.1, which is loaded

by a sinusoidally distributed pressure q = q0 sin
(πx
L

)
. The governing equations (3.9b)-(3.9c)

for FSDT written in terms of w0 and θ are

δθ : Dθ,xx − kG (w0,x + θ) = 0 (3.41a)

δw0 : kG (w0,xx + θ,x) + q = 0 (3.41b)

where k is a pertinent shear correction factor, D is the bending rigidity and G the shear rigidity

of the single layer. These rigidities are defined as follows:

D =
E11

1− υ2

t3

12
= Q11

t3

12
and G = G13t (3.42)

where the term Q11 = E11/
(
1− υ2

)
has been defined. The ad-hoc assumptions

w0 = W0 sin
(πx
L

)
and θ = Θ cos

(πx
L

)
(3.43)

satisfy the boundary conditions exactly. Substituting Eq. (3.43) into the governing field equa-

tions (3.41) and solving for the unknown coefficients W0 and Θ gives

Θ = −q0

D

L3

π3
(3.44a)

W0 =
q0L

4

Dπ4

(
1 +

D

kG

π2

L2

)
. (3.44b)

Substituting Eq. (3.42) into Eq. (3.44) yields

WFSDT
0 =

q0L
4

Dπ4

[
1 +

π2

12k

{
Q11

G13

(
t

L

)2
}]

=
q0L

4

Dπ4

[
1 +

π2

12k
λ

]
(3.45)
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3.2. General higher-order theories

where λ =
Q11

G13

(
t

L

)2

is a layup dependent ratio that governs the influence of transverse shear

deformation. The origin of this parameter is discussed by Hu et al. [166], and has been used

extensively in the literature to assess the effect of transverse shear deformation on the structural

behaviour of beams, plates and shells. As FSDT only captures first-order effects, the order of

λ in Eq. (3.45) is one.

A similar analysis is conducted for 3HOT by writing the governing field equations (3.36) in

terms of the unknown variables θ, ζ and w0,

δθ : Dθ,xx + Eζ,xx −G (w0,x + θ)−Hζ = 0 (3.46a)

δζ : Eθ,xx + Fζ,xx −H (w0,x + θ)− Iζ = 0 (3.46b)

δw0 : G (w0,xx + θ,x) +Hζ,x + q = 0 (3.46c)

where D and G are as previously defined in Eq. (3.42), F and I are the higher-order bending and

transverse shear rigidities, respectively, and E and H are the first-order/higher-order coupling

bending and transverse shear rigidities, respectively. These terms are defined as follows:

E = Q11
t5

80
, F = Q11

t7

448
, H = G13

t3

4
and I = G13

9t5

80
. (3.47)

The assumptions

w = W0 sin
(πx
L

)
and (θ, ζ) = (Θ, Z) cos

(πx
L

)
(3.48)

satisfy the boundary conditions exactly. Substituting Eq. (3.48) into the governing field equa-

tions (3.46) and solving for the unknown coefficients W0, Θ and Z gives

Z = q0
L

π
η where η =

H
G −

E
D

π2

L2

(
E2

D − F
)

+ H2

G − I
(3.49a)

Θ = −q0

D

L3

π3

(
1 + E

π2

L2
η

)
(3.49b)

W0 =
q0L

4

Dπ4

[
1 +

D

G

π2

L2
+
π2

L2

(
E − DH

G

)
η

]
. (3.49c)

Substituting Eq. (3.47) into Eq. (3.49) yields

W 3HOT
0 =

q0L
4

Dπ4

[
1 +

π2

12
λ+

π2

60

λ

1 + π2

140λ

]
(3.50)

which shows that the transverse displacement is now a higher-order function of λ. The expres-

sion in Eq. (3.50) is expanded via a binomial series and compared to the FSDT expression in

Eq. (3.45). Thus, expanding Eq. (3.50) as a power series gives

W 3HOT
0 =

q0L
4

Dπ4

[
1 +

π2

12
λ+

π2

60
λ− π4

8400
λ2 +O(λ3)

]
=
q0L

4

Dπ4

[
1 +

π2

10
λ− π4

8400
λ2 +O(λ3)

]
.

(3.51)
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Figure 3.7: Variation of the normalised transverse shear stress τ̄xz through the thickness of
a [0] laminate for three values of λ. Results are calculated using Pagano’s 3D
elasticity solution [20].

The above equation shows that if the shear correction factor for FSDT is chosen to be k = 5/6,

i.e. the original value found by Reissner [56], then the first-order coefficients of λ in Eq. (3.45)

and Eq. (3.51) are equal. Thus, the shear correction factor of k = 5/6 guarantees that FSDT

accounts for the first-order structural effects associated with λ. The shear correction factor is

generalised to include all the higher-order terms of λ explicit in 3HOT by equating Eq. (3.45)

and Eq. (3.50). Hence,

1 +
π2

12k
λ = 1 +

π2

12
λ+

π2

60

λ

1 + π2

140λ
⇒ k =

[
1

5

(
1 +

π2

140
λ

)−1

+ 1

]−1

. (3.52)

The expression in Eq. (3.52) shows that the shear correction factor k → 5/6 as λ → 0. Fur-

thermore, as λ → ∞ the value of k → 1. This result suggests that a shear correction factor of

k = 5/6 pertains to a fictitious layer of infinitesimal thickness or infinite length with perfectly

linear and parabolic through-thickness variations of σx and τxz, respectively. As λ increases,

and the “stress-channelling” effect becomes more significant, the through-thickness variations

of σx and τxz transition to increasingly higher-order profiles (see Figures 3.5 and 3.6). As a

result of σx channelling towards the outside surfaces, the transverse shear stress τxz is more

evenly distributed at the centre (see Figure 3.7), an effect which is analogous to the behaviour

observed in a sandwich beam with stiff face layers and compliant core. With more of the cross-

section sheared by the same amount, the shear correction factor consequently increases from

k = 5/6 because the energetic difference between the constant shear stress profile of FSDT and

the actual profile is decreasing. Thus, in the limiting case of constant shear stress through the

thickness, the shear correction factor approaches unity.
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3.2. General higher-order theories

Table 3.6: Normalised transverse displacement w̄ of an infinitely wide plate simply supported
at two ends and loaded by a sinusoidally distributed pressure. The results of
Pagano’s 3D elasticity solution [20] are compared to two Mindlin (FSDT) solu-
tions with different shear correction factors k.

t

L

E11

G13

Pagano
FSDT (%) FSDT (%)

k = 5/6 k = Eq. (3.52)

0.1
50

0.1829 0.41 0.22
0.2 0.3605 1.53 0.14
0.1

100
0.2428 0.70 0.15

0.2 0.5923 2.85 -0.16

In essence, Eq. (3.52) generalises the shear correction factor for a plate of finite thickness to a

chosen order of λ up to the accuracy inherent in 3HOT. In Table 3.6, the normalised transverse

deflection from FSDT calculated using the generalised shear correction factor of Eq. (3.52) and

the classical value of k = 5/6 are compared. The table shows that the percentage error with

respect to Pagano’s 3D elasticity solution [20] is significantly reduced when the shear correction

factor in Eq. (3.52) is used.

The local axial stress results of the two FSDT solutions are unchanged because the through-

thickness stress assumption remains linear. Substituting the solutions for the displacement

variables of FSDT in Eq. (3.44) into the kinematic and constitutive relations, the axial stress

field for FSDT is given by

σFSDTx = Q11
q0L

2

Dπ2
z · sin πx

L
(3.53)

and this is unchanged from the CLA solution. This observation that FSDT improves predictions

of global structural phenomena but not of the stress fields was first made by Whitney [28].

Similarly, using the solution for the displacement variables of 3HOT in Eq. (3.49), the axial

stress reads as follows

σ3HOT
x = σFSDTx

[
1− π2λ

1 + π2

140λ

{
1

40
− 1

6

(z
t

)2
}]

. (3.54)

Expanding Eq. (3.54) as a power series of λ, i.e.

σ3HOT
x

σFSDTx

= 1−
(
π2

40
λ− π4

5600
λ2 +O(λ3)

)
+

(
π2

6
λ− π4

840
λ2 +O(λ3)

)(z
t

)2
(3.55)

shows that the higher-order solution modifies the FSDT axial stress field in two ways. First,

the average slope of the through-thickness field is modified by the power series coefficient in

the first bracket of Eq. (3.55). Second, a higher-order component that governs the extent

of “stress-channelling” is given by the power series coefficient of (z/t)2. In this particular

case, the higher-order component has a leading coefficient that is 20/3 times greater than the

leading coefficient of the average slope change. Thus, the inclusion of the cubic term z3 in the

displacement field refines the axial stress more through the higher-order “stress-channelling”

effects than by correcting the linear component.

Finally, the solution process presented above is extended to 5HOT and 7HOT in order
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Table 3.7: Convergence of the normalised transverse deflection W0
Dπ4

q0L4
with increasing order

of λn for three different materials with thickness to length ratio t/L = 0.3. The
convergence is compared to the full series solution (n → ∞) of 3HOT, 5HOT and
7HOT.

Expansion up to λn term Full Full Full
Material λ n=1 n=2 n=3 n=4 n=5 3HOT 5HOT 7HOT

Isotropic
0.234 1.2309 1.2303 1.2303 1.2303 1.2303 1.2303 1.2303 1.2303(

E11

G13
= 2.6

)
IM7 8552

3.6 4.5531 4.4028 4.4621 4.4368 4.4478 4.4332 4.4444 4.4445(
E11

G13
= 40

)
Highly Ortho.

9 9.8826 8.9433 9.8704 8.8812 9.9590 9.3080 9.3940 9.3957(
E11

G13
= 100

)

to derive shear correction factors that correct FSDT to an order consistent with 5HOT and

7HOT. For 5HOT and 7HOT, Eqs. (3.46) now feature five and seven governing field equations,

respectively, in terms of five and seven displacement unknowns. The algebraic derivations are

straightforward but rather involved and, for brevity, only the final result is shown here. Hence,

the transverse deflection magnitudes W 5HOT
0 and W 7HOT

0 are given by

W 5HOT
0 =

q0L
4

Dπ4

[
1 +

π2

12
λ+

π2

60λ+ π4

9240λ
2

1 + 3π2

220λ+ π4

55440λ
2

]
(3.56)

W 7HOT
0 =

q0L
4

Dπ4

[
1 +

π2

12
λ+

π2

60λ+ π4

6300λ
2 + π6

3931200λ
3

1 + π2

60λ+ π4

18200λ
2 + π6

43243200λ
3

]
. (3.57)

The expressions for W 3HOT
0 of Eq. (3.51), and W 5HOT

0 and W 7HOT
0 of Eqs. (3.56) and (3.57),

respectively, are now expanded up to the fifth order of λ. Hence,

W 3HOT
0 =

q0L
4

Dπ4

[
1 +

π2

10
λ− π4

8400
λ2 +

π6

1176000
λ3 − π8

1.646× 108
λ4 +

π10

2.305× 1010
λ5 +O(λ6)

]
(3.58)

W 5HOT
0 =

q0L
4

Dπ4

[
1 +

π2

10
λ− π4

8400
λ2 +

π6

756000
λ3 − 37π8

2.328× 109
λ4 +

127π10

6.586× 1011
λ5 +O(λ6)

]
(3.59)

W 7HOT
0 =

q0L
4

Dπ4

[
1 +

π2

10
λ− π4

8400
λ2 +

π6

756000
λ3 − 37π8

2.328× 109
λ4 +

59π10

3.027× 1011
λ5 +O(λ6)

]
.

(3.60)

Comparing Eqs. (3.59), (3.60) and (3.58), it is evident that the higher-order theories progres-

sively correct higher-order terms in λ. As a result, the expansion of 3HOT converges to λ2,

5HOT to λ4 and 7HOT to λ6. Even though the expression for w0 can be seen to follow a

decaying progression, no closed-form holonomic sequence could be determined herein.
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Table 3.7 shows the convergence of normalised transverse deflection w0
Dπ4

q0L4
with increasing

order of λn up to n = 5 for three different materials with thickness to length ratio t/L = 0.3.

The three materials are a metallic isotropic material with Poisson’s ratio υ = 0.3, an industrial

grade carbon-fibre pre-preg IM7 8552 and a highly orthotropic lamina. The results show that

for metallic isotropic materials the solution converges for n = 1, i.e. a first-order theory solution.

For materials with λ ≈ 3, such as a very thick IM7 8552 composite, the solution converges for

n = 4, i.e. a third-order theory solution. For the highly orthotropic material the full series

solutions between 5HOT and 7HOT are similar but a power series solution in terms of λn needs

to be expanded beyond n = 5 to achieve convergence. It is important to note that the higher-

order solutions past 5HOT may be meaningless. The structural behaviour for large values of

λ, where these higher-order theories are necessary, may be influenced to a greater extent by

transverse normal deformation, which has been ignored in the present analysis.

3.3 Conclusions

Static inconsistencies in modelling clamped boundary conditions using displacement-based, ax-

iomatic, higher-order theories have been discussed. Enforcing the boundary condition of van-

ishing transverse shear strain at the top and bottom surfaces a priori introduces the Kirchhoff

rotations w0,x and w0,y into the expansion for ux and uy, respectively. If the governing differen-

tial equations are derived using the PVD, an essential boundary condition on w0,i perpendicular

to an edge arises, which needs to be prescribed to properly constrain the boundary value prob-

lem. At a clamped edge the ensuing condition w0,i = 0 is physically inaccurate as the plate can

rotate at the clamped edge due to the presence of transverse shearing. Furthermore, this condi-

tion causes the transverse shear force, as derived from constitutive equations, to vanish at the

clamped edge. Such a condition is erroneous when compared to simple transverse equilibrium

conditions. Finally, constraining w0,i = 0 at the clamped edge overconstrains the structure,

leading to underpredictions of transverse deflections and overpredictions of axial stresses.

When the in-plane displacement fields are written as a general power series in terms of

the transverse coordinate z, as proposed in Carrera’s Unified Formulation, this inconsistency

does not occur. Furthermore, if the order of the theory is sufficient to capture all higher-

order effects, the transverse shear stresses automatically vanish at the top and bottom surfaces,

thereby obviating the need for enforcing this constraint explicitly a priori. Based on this insight,

a nondimensional parameter based on the transverse shear strain energy at the surfaces was

introduced to gauge the accuracy of a higher-order theory. Finally, it was shown that the

structural behaviour of a single layer plate in bending is a function of the parameter λ =
Q11

G13

(
t

L

)2

. The parameter λ can be used to derive shear correction factors for FSDT that

allow the transverse bending deflection results of the single layer to match any higher-order

theory.
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Chapter 4

Hellinger-Reissner Model for Heterogeneous

Laminated Beams

The previous chapter showed that displacement-based theories that enforce equilibrium of trans-

verse shear stresses on the top and bottom surfaces using the kinematic and constitutive equa-

tions lead to static inconsistencies at clamped edges. The discussion in Chapter 3 focused

on a single layer, and therefore did not address the interlaminar continuity condition present

in laminated structures. In fact, for typical higher-order displacement-based theories, such as

Reddy’s third-order theory [34], the transverse stresses are derived from kinematic and consti-

tutive equations, and do not satisfy the interlaminar continuity condition of transverse stresses

even when equilibrium of the surface tractions is enforced via the displacement field.

Some higher-order theories, such as the ZZ theories by Ambartsumyan [67] and Whitney [68],

derive the displacement field directly from a layerwise-continuous assumption of the transverse

shear stresses, and thus guarantee interlaminar and surface equilibrium of the transverse stresses.

However, this derivation typically introduces the Kirchhoff rotation w0,i into the displacement

assumption, thereby leading to the mathematical inconsistency at a clamped edge discussed in

Chapter 3.

One alternative is to increase the number of variables in the general displacement-based

theories until the transverse interfacial conditions are naturally satisfied. However, such an

approach is associated with relatively high computational cost due to the large number of

degrees of freedom required. The accepted trade-off in the literature is to use higher-order

displacement-based theories that produces transverse shear and transverse normal stresses that

violate interfacial equilibrium conditions, and then recover more accurate transverse stresses

by integrating the in-plane stresses in Cauchy’s indefinite equilibrium equations. The draw-

back of this post-processing approach is that the derived transverse stresses do not satisfy the

equilibrium equations of the underlying model, and are thus variationally inconsistent.

Thus, there exists a need for ESLTs that predict accurate 3D stress fields from the underlying

model assumptions, thereby preventing static inconsistencies at clamped edges and precluding

post-processing steps. A promising approach towards this end are mixed-variational theories

based on both displacement and stress variables. The most commonly used of these statements

for multilayered structures is RMVT, developed by Reissner [61] particularly for the analysis

of layered structures. Similarly, the HR principle is another mixed-variational approach that,

in terms of calculating accurate 3D stresses, has the beneficial characteristic of forcing the ad-

hoc stress assumptions to explicitly obey Cauchy’s 3D equilibrium equations in the variational

statement. In most other variational statements this condition is not enforced explicitly. The

results in the following chapters show that this characteristic means that transverse stresses

are accurately computed from the underlying model assumptions and boundary layer effects
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4.1. Mechanics of zig-zag displacements

towards boundaries are captured robustly.

In Section 4.1, the origin of the ZZ effect is elucidated using a physically intuitive analogy of

a system of springs in series combined with a system of springs in parallel. A higher-order model

based on a global, continuous deformation field coupled with a local, layer-wise ZZ deformation

field is derived in Section 4.2 using the HR principle. The transverse stress assumptions are

derived from integrations of the axial stress in Cauchy’s equilibrium equations, such that all

stress fields are based on the same set of unknowns. This allows a condensed form of the HR

functional to be used, which only enforces the membrane and bending equilibrium equations via

Lagrange multipliers. All other higher-order equilibrium equations are not enforced explicitly

as the equilibrated transverse stress assumptions inherently satisfy these. Even though local

layerwise properties are taken into account via a ZZ function, all functional unknowns are

independent of the number of layers, and therefore the model is an equivalent single-layer

formulation. The governing equations1 are derived in a generalised framework that allows the

order of the theory to be specified a priori, eliminating the need for rederiving the governing

equations as the order is increased.

4.1 Mechanics of zig-zag displacements

In the following section the mechanics of the ZZ effect are elucidated using the simple example

of a beam in bending. The mechanical origins of the ZZ displacements are discussed, and

this physical insight is then used to phenomenologically depict the laminated beam using an

equivalent system of springs in series coupled with a system of springs in parallel. The analogous

mechanical system is used to interpret the physical meaning of the RZT ZZ function, which, as

discussed in Section 2.2.3, has been shown to provide accurate results for highly heterogeneous

laminates.

4.1.1 Origin of zig-zag displacements

Consider an Nl layer composite beam of arbitrary constitutive properties as depicted in Fig-

ure 4.1. The beam may be of entirely anisotropic or sandwich construction, and is subjected to

external tractions causing it to deflect transversely to the stacking direction. The x-direction

is defined to be along the principle beam axis (0◦ fibre-direction), whereas the z-axis is in the

transverse stacking direction. For the purpose of this explanation, it is assumed that transverse

normal strain is negligible but that transverse shear deformation cannot be neglected.

To prevent individual layers from sliding, the IC conditions for the displacement field ux

and the transverse shear stress τxz need to be satisfied. Hence,

u(k)
x (zk) = u(k+1)

x (zk) and τ (k)
xz (zk) = τ (k+1)

xz (zk), k = 1 . . . Nl − 1 (4.1)

where subscripts k and superscripts (k) indicate layerwise and interfacial quantities, respectively.

If the composite beam is comprised of layers with different transverse shear moduli, then the IC

condition on transverse shear stress inherently results in discontinuous transverse shear strains

1Governing field equations and boundary conditions.
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4.1. Mechanics of zig-zag displacements
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Figure 4.1: Arbitrary laminate configuration with coordinate system and approximate in-
plane displacements. The broken line pertains to a classical displacement field,
whereas the solid line captures the ZZ effect.

across ply interfaces. Assuming a linear geometric deformation, the kinematic relation for the

transverse shear strain is given by

γxz = uz,x + ux,z ⇒ ux,z = γxz − uz,x. (4.2)

As the transverse normal strain is assumed to be negligible the displacement uz is constant

for all layers, such that, according to Eq. (4.2), discontinuous transverse shear strains lead

to changes in ux,z across ply interfaces. Thus, the slope of the displacement field ux in the

thickness direction changes at ply interfaces, giving rise to the so-called “zig-zag” displacement

field. This effect is depicted graphically by the in-plane displacement ux, transverse shear stress

τxz, and transverse shear strain γxz plots through the thickness of a [90/0/90/0/90] laminate in

Figure 4.2. Here, the transverse shear modulus Gxz of the 90◦ layers is 2.5 times smaller than

the value of Gxz for the 0◦ oriented layers, which causes a step change in transverse shear strain

at the ply interfaces.

Figure 4.2 also shows an example of a laminate with “Externally Weak Layers” (EWLs). As

discussed by Gherlone [54], these laminates have external layers (k = 1 or k = Nl) with trans-

verse shear moduli lower than the adjacent internal layers (k = 2 and k = Nl− 1, respectively),

and do not appear to have a ZZ discontinuity at these interfaces. Thus, Gherlone introduced

a slight modification to the calculation of the RZT ZZ slopes introduced in Eq. (2.28). Hence,

when calculating the RZT ZZ function

• If G(1)
xz < G(2)

xz , then G(1)
xz = G(2)

xz

• If G(N)
xz < G(N−1)

xz , then G(N)
xz = G(N−1)

xz .
(4.3)

Gherlone attributed the EWL phenomenon to the stiffer inner layers dominating the more

compliant external layers. However, there is in fact a slope discontinuity at the interfaces of the

EWL. This discontinuity is considerably smaller than at the interface between the internal 0◦
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4.1. Mechanics of zig-zag displacements
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Figure 4.2: Pagano’s through-thickness solution [20] of normalised in-plane deflection and
transverse shear stress for a [90/0/90/0/90] laminate. This laminate is an exam-
ple of EWLs indicated by the lack of zig-zag discontinuity at the outermost ply
interfaces.

and 90◦ layers, and is consequently not noticed as easily. This phenomenon may be explained by

observing the general shape of the transverse shear stress and transverse shear strain profiles of

the [90/0/90/0/90] laminate shown in Figure 4.2b. The transverse shear stress at the interface

between the outer layers is an order of magnitude smaller than the transverse shear stress at

the inner interfaces. Therefore the discontinuity in transverse shear strain is much larger for

the inner layers than for the outer layers, such that it appears as if there is no ZZ effect for

the outermost interfaces. Even though the ratio of shear strains at the outer and inner [90/0]

interface remains the same, the difference in magnitude is considerably larger for the inner

layers. It is this difference in transverse shear strains, rather than their ratio that drives the

slope discontinuity of the displacement field. Thus, the magnitude of the ZZ discontinuity is

both a function of the ratio of transverse shear moduli and the magnitude of the transverse

shear stresses at the interface.

This also means that EWL laminates with less than three layers, such as [0/90], [90/0]

and [90/0/90] laminates, always show the same degree of ZZ effect at the interfaces. Thus,

Gherlone [54] was forced to specify an exception to the EWL implementation rule of the RZT

ZZ slopes of Eq. (4.3); namely, the rule does not apply if the condition reduces the laminate to

have the same transverse shear moduli for all layers, as would be the case for the [0/90], [90/0]

and [90/0/90] laminates.

The difficulty in accurately modelling the ZZ phenomenon is that the displacement and

transverse shear stress fields are dependent. To solve any 3D elasticity problem, the full set

of 15 equations, namely 6 kinematic equations, 3 equilibrium equations and 6 constitutive

equations, are required to solve for all 3 displacement variables, 6 stress and 6 strain fields. The

interaction between the 15 unknowns is shown graphically in Figure 4.2, whereby the layerwise

slopes of the ZZ displacement field ux depend on the transverse shear stress distribution, and the

transverse shear stress is a function of the kinematic equations. Thus, the ZZ effect arises from
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4.1. Mechanics of zig-zag displacements
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Figure 4.3: Schematic diagram of a composite laminate with varying layerwise transverse
shear moduli G(k)

xz loaded by a transverse shear load and bending moment. The
structure is modelled by an analogous system of mechanical springs.

the interaction of the full set of displacement, strain and stress variables in the 3D elasticity

equations.

It is therefore a challenge to derive a mechanically consistent 2D approach that accurately

models this inherently 3D effect. For axiomatic, displacement-based theories, the difficulty lies

in the fact that assumptions for the displacement variables need to incorporate ZZ unknowns

that lead to accurate transverse shear stresses that obey the interlaminar continuity condi-

tions. In the reverse case, Ambartsumyan-type models [67] based on initial transverse shear

stress assumptions, need to include all pertinent variables that influence the distributions of

the transverse shear stresses, and also lead to accurate through-thickness distributions of the

displacement fields.

4.1.2 Spring model for zig-zag displacements

As depicted in Figure 4.3, the IC requirements on in-plane displacements and transverse shear

stresses are mechanically similar to a combined system of “springs-in-series” and “springs-in-

parallel”. For example, a set of springs in series acted upon by a constant force extends the

springs by different amounts. By analogy, a constant transverse shear stress acting on a laminate

with layers of different shear moduli results in different shear strains in the layers, which are

smeared, average values of the actual piecewise-parabolic distributions. At the same time, a

system of springs in parallel elongated by a common displacement develops different reaction

forces in the springs. This case is interpreted as layerwise transverse shear stresses concentrated

in the areas of highest stiffness. Conceptually, these two spring systems combine to capture the

interplay between transverse shear stress and displacements as influenced by the IC conditions.

Following this line of reasoning, the average transverse shear stress condition of the “springs-

in-series” model is expressed via Hooke’s law as an effective shear modulus G multiplied by an

average shear strain γ̄xz. Thus,

τxz = Gγ̄xz. (4.4)

The effective shear modulus G is found using the reciprocal stiffness equation of a set of springs
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4.1. Mechanics of zig-zag displacements

in series

G =

[
t(1)/t

G
(1)
xz

+
t(2)/t

G
(2)
xz

+ · · ·+ t(Nl)/t

G
(Nl)
xz

]−1

=

[
1

t

Nl∑
k=1

t(k)

G
(k)
xz

]−1

. (4.5)

Note that the shear modulus of each layer is normalised by the layer thickness fraction t(k)/t

to guarantee that G = Gxz for a laminate with layers of equal shear moduli. The change in

displacement slope ux,z at layer interfaces depends on the difference in transverse shear strain

at the layer interfaces. By inserting Eq. (4.4) into the transverse shear constitutive equation,

γ(k)
xz =

τ
(k)
xz

G
(k)
xz

=
G

G
(k)
xz

γ̄xz = g(k)γ̄xz (4.6)

we see that the transverse shear strain is a function of the layerwise stiffness ratio g(k) = G/G(k)
xz .

This ratio is used to capture the differences in layerwise displacement slopes, and is in fact very

similar to the RZT slope function defined in Eq. (2.28).

Figure 4.2b shows that the shear stress profile of a multilayered beam differs from a single

layer beam in that the z-direction curvature of the transverse shear stress profile in the stiffer

0◦ plies is increased, whereas the curvature in the more compliant 90◦ is reduced. Integrating

the axial stress σx derived from CLA for a zero B-matrix laminate in Cauchy’s first equilibrium

equation,

σx = Q̄(k)εx = Q̄(k)zκx and τxz = −
∫

dσx
dx

dz = −Q̄(k) z
2

2
κx + C (4.7)

shows that the magnitude of the quadratic term z2 is influenced by the transformed layer

stiffness Q̄(k), noting that κx is the flexural curvature. The “springs-in-series” analogy is now

used to define an effective in-plane stiffness E,

E =
1

t

Nl∑
k=1

t(k)Q̄(k) such that e(k) =
Q̄(k)

E
. (4.8)

The change in layerwise z-direction curvature of the transverse shear stress profile is a function

of the relative magnitude of Q̄(k) to the equivalent laminate stiffness. Therefore, a layerwise

in-plane stiffness ratio e(k) is defined to quantify the change in transverse shear stress curvature

of each layer.

The layerwise stiffness ratios e(k) and g(k) are used in a study by the present author [167]

to locally modify a parabolic transverse shear stress assumption, which is then used to derive

an Ambartsumyan-type displacement-based model with just two unknowns. This simple and

efficient phenomenological approach results in predictions of bending deformation, axial stress

and transverse shear stress to within 5% of Pagano’s 3D elasticity solution [20] for laminates

with thickness-to-length ratios up to 1 : 10, without the need for post-processing steps. However,

this approach can lead to errors greater than 50% for non-symmetric laminations and for cases

where the ZZ effect is pronounced. Although the derivation of the layerwise stiffness ratios g(k)

and e(k) via Eqs. (4.6) and (4.8), respectively, sheds light onto the physics of the ZZ effect, a

more rigorous approach is needed to capture the ZZ effect efficiently and accurately.
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Figure 4.4: A composite beam loaded by distributed loads on the top and bottom surfaces
and subjected to pertinent boundary conditions at ends A and B.

4.2 Hellinger-Reissner higher-order zig-zag model

Previous studies [55,77,78] have shown that accurate transverse stress fields can be derived in a

post-processing step by indefinitely integrating the axial stresses of displacement-based theories

in Cauchy’s equilibrium equations. It is expedient to perform this step a priori and to then

derive new sets of governing equations using the inherently equilibrated stress fields. Such an

approach was applied within the framework of the HR principle by Cosentino and Weaver [60],

but the authors restricted the model to symmetric laminations of straight-fibre composites, did

not include higher-order effects in the formulation, and assumed equal transverse shear rigidity

G(k)
xz = G(k)

yz for all layers k. This previous work is generalised herein to account for a wider

range of highly heterogeneous, highly orthotropic and variable-stiffness laminates. Additionally,

the present work provides detailed physical insight into the significance of the derived equations

and shows why the equilibrium of the transverse stresses is rigorously guaranteed. The model

is thus applicable for the analysis of a wide range of industrial engineering structures, but also

provides insights and interesting observations into extreme mechanical behaviour.

4.2.1 Higher-order zig-zag axial stress field

Consider a multilayered continuum as represented in Figure 4.4 undergoing static deformations

under a specific set of externally applied loads and boundary conditions. The continuum is

bounded by two boundary surfaces S1 and S2 on which the displacement and traction boundary

conditions are specified, respectively, and where the complete bounding surface S = S1 ∪ S2.

The continuum has total thickness t and is comprised of Nl perfectly bonded laminae with layer

thicknesses t(k). The initial configuration of the plate is referenced in orthogonal Cartesian

coordinates (x, y, z), with (x, y) defining the two in-plane dimensions and z ∈ [−t/2, t/2] defining

the thickness coordinate. From hereon, it is assumed that the structural behaviour of this

continuum is independent of the y-direction, such that a 1D beam formulation can be used.

Thus, within an equivalent single-layer framework, this multilayered structure is compressed

onto a line element Ω coincident with the x-axis by integrating the structural properties and

3D governing equations in the direction of the smallest dimension z. The intersection of the

bounding surface S and the reference line element Ω represents the two boundary points of the

equivalent single layer. If displacement conditions are specified on a boundary point, this is
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4.2. Hellinger-Reissner higher-order zig-zag model

denoted by C1 and in the case of traction boundary conditions we refer to point C2. The plate

is assumed to undergo static deformations under a specific set of externally applied shear and

normal tractions
(
T̂b, P̂b

)
and

(
T̂t, P̂t

)
in the (x, z)-directions on the bottom and top surfaces

of the 3D body, respectively. Note that henceforth a superposed “hat”ˆrefers to a prescribed

quantity.

This equivalent single layer is assumed to deform according to a generalised in-plane and

transverse displacement field,

u(k)
x (x, z) = u0 + zθ + z2ζ + z3ξ + · · ·+ φ(k)(z)ψ

u(k)
z (x, z) = w0

(4.9)

where u0 is the reference surface axial displacement, θ is the rotation of the beam cross-section,

ζ, ξ, . . . are higher-order rotations, ψ is the ZZ rotation, and φ(k) is a pertinent ZZ function of

layer k. In condensed matrix form Eq. (4.9) reads

u(k)
x (x, z) = fgUg + φ(k)ψ =

[
fg φ(k)

]{Ug
ψ

}
= f (k)

u U (4.10)

where Ug and ψ are the global and local displacement fields, respectively, and the global row

vector fg describes the global through-thickness displacement variation. Hence,

fg(z) =
[
1 z z2 z3 . . .

]
, Ug =

[
u0 θ ζ ξ . . .

]>
(4.11)

where the superscript > denotes the matrix transpose. The in-plane strain is given by the first

derivative of Eq. (4.10) in the x-direction. Thus,

ε(k)
x = u(k)

x,x = fgUg,x + φ(k)
,x ψ + φ(k)ψ,x = fgεg + f lεl (4.12)

where the comma notation is employed to denote differentiation, the global strain field εg = Ug,x,

and the local strain field εl and local row vector f l are given by

f l(z) =
[
φ(k)
,x φ(k)

]
, εl =

[
ψ ψ,x

]>
. (4.13)

The axial strain field in Eq. (4.12) is written as a combination of a global higher-order strain

field (independent of local ply properties) and a local ZZ strain field (dependent on local ply

properties). Most ZZ functions in the literature can be written in the linear form

φ(k)(z) = m(k)z + c(k). (4.14)

As outlined in the work by Tessler et al. [78], the RZT ZZ function φ
(k)
RZT is defined by

φ
(1)
RZT =

(
z +

t

2

)(
G

G
(1)
xz

− 1

)
(4.15a)

φ
(k)
RZT =

(
z +

t

2

)(
G

G
(k)
xz

− 1

)
+

k∑
i=2

t(i−1)

(
G

G
(i−1)
xz

− G

G
(k)
xz

)
(4.15b)
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4.2. Hellinger-Reissner higher-order zig-zag model

where G is the equivalent “springs-in-series” stiffness defined in Eq. (4.5). The RZT ZZ function

is derived from transverse material properties and may vary with location x for variable-stiffness

laminates. A second ZZ function, namely MZZF [86], is given by

φ
(k)
MZZF = (−1)k

2

t(k)

(
z − z(k)

m

)
(4.16)

where z(k)
m is the midplane coordinate of layer k. Thus, MZZF assumes alternating values of

+1 and −1 at the top and bottom interfaces regardless of axial location. In this case, the

derivative φ(k)
,x and the associated displacement unknown ψ vanish in Eqs. (4.12) and (4.13). In

the following Chapters 5 and 6 the accuracy of the RZT ZZ function and MZZF are compared

for a number of different composite laminates and sandwich beams.

Using the constitutive equation, the axial stress field is derived from the axial strain in

Eq. (4.12) as follows:

σ(k)
x = Q̄(k)ε(k)

x = Q̄(k)
(
fgεg + f lεl

)
(4.17)

where Q̄(k) is the reduced stiffness matrix, assuming either a plane strain or a plane stress

condition in y. Next, the in-plane stress resultants are derived by integrating the axial stress of

Eq. (4.17), weighted by the expansion functions f l and fg, through the thickness. Hence,

Fg =

∫ t/2

−t/2
fg
>
σ(k)
x dz =

∫ t/2

−t/2

(
fg
>
Q̄(k)fgεg + fg

>
Q̄(k)f lεl

)
dz = Sggε

g + Sglε
l (4.18)

F l =

∫ t/2

−t/2
f l
>
σ(k)
x dz =

∫ t/2

−t/2

(
f l
>
Q̄(k)fgεg + f l

>
Q̄(k)f lεl

)
dz = Slgε

g + Sllε
l (4.19)

where Sgg, Sgl, Slg and Sll are the global, local and global-local coupling stiffness matrices,

Sgg =

∫ t/2

−t/2
fg
>
Q̄(k)fgdz, Sgl =

∫ t/2

−t/2
fg
>
Q̄(k)f ldz, (4.20)

Slg =

∫ t/2

−t/2
f l
>
Q̄(k)fgdz, Sll =

∫ t/2

−t/2
f l
>
Q̄(k)f ldz. (4.21)

Therefore, the relation between stress resultants and strain variables is given by{
Fg

F l

}
=

[
Sgg Sgl

Slg Sll

]{
εg

εl

}
⇒ F = Sε and ε = sF where s = S−1 (4.22)

where S is the higher-order stiffness matrix of membrane and flexural rigidities, and its inverse

s is the higher-order compliance matrix. These matrices relate the stress resultants F to the

strain measures ε of the reference plane, and vice versa. The equation for in-plane stress in

Eq. (4.17) is now recast in terms of stress resultants F by eliminating the strains ε,

σ(k)
x = Q̄(k)

[
fg f l

]{εg
εl

}
= Q̄(k)f (k)

ε ε = Q̄(k)f (k)
ε sF (4.23)

where f (k)
ε =

[
fg f l

]
. The axial stress field of this higher-order model written in terms of the
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4.2. Hellinger-Reissner higher-order zig-zag model

stress resultants F is used to derive expressions for the transverse shear and transverse normal

stress fields.

4.2.2 Derivation of transverse shear and transverse normal stresses

An expression for the transverse shear stress is found by integrating the axial stress of Eq. (4.23)

in Cauchy’s axial equilibrium equation,

τ (k)
xz = −

∫
dσx
dx

dz = − d

dx

[
Q̄(k)

(∫
f (k)
ε dz

)
sF
]

= − d

dx

[
Q̄(k)g(k)sF

]
+ a(k) (4.24)

where g(k)(z) captures the variation of τ (k)
xz through the thickness of each ply k,

g(k)(z) =

[
z

z2

2

z3

3
· · · m

(k)
,x z2

2
+ c(k)

,x z
m(k)z2

2
+ c(k)z

]
. (4.25)

Note, the derivative d/dx is applied to all terms within the square brackets in Eq. (4.24) as

both the material dependent quantities Q̄(k), g(k) and s, as well as the stress resultants F can

vary along the length of a variable-stiffness beam. At this point, the product rule is not applied

to expand the derivatives in order to keep the derivations as concise as possible.

The Nl layerwise constants a(k) are found by enforcing Nl−1 interfacial continuity conditions

τ (k)
xz (zk−1) = τ (k−1)

xz (zk−1) for k = 2 . . . Nl and one of the prescribed surface tractions, i.e. either

the bottom surface τ (1)
xz (z0) = T̂b or the top surface τ (Nl)

xz (zNl) = T̂t. Here we choose to enforce

the bottom surface traction, such that the layerwise integration constants a(k) are found to be

a(k) =
k∑
i=1

d

dx

[{
Q̄(i)g(i)(zi−1)− Q̄(i−1)g(i−1)(zi−1)

}
sF
]

+ T̂b =
d

dx

[
α(k)sF

]
+ T̂b (4.26)

where by definition Q̄0 = 0. Substituting the integration constants of Eq. (4.26) back into

Eq. (4.24) gives an expression for the transverse shear stress in terms of the shape functions g(k),

material properties Q̄(k), higher-order compliance matrix s, and the unknown stress resultants

F . Hence,

τ (k)
xz =

d

dx

[{
−Q̄(k)g(k) +α(k)

}
sF
]

+ T̂b. (4.27)

In the derivation of Eq. (4.26) the surface traction on the top surface is not enforced ex-

plicitly. However, this condition is automatically satisfied if equilibrium of the axial stress field

Eq. (4.23) and the transverse shear stress Eq. (4.27) is enforced. As we are dealing with an

equivalent single layer, Cauchy’s axial equilibrium equation is integrated through the thickness

z-direction to give∫ zNl

z0

σx,xdz +

∫ zNl

z0

τxz,zdz = N,x + τ (Nl)
xz (zNl)− τ

(1)
xz (z0) = 0 (4.28)

where N is the membrane stress resultant of CLA. An expression for N,x is easily derived by

differentiating Eq. (4.23) along the x-direction and then integrating in the z-direction. These
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steps result in the following expression

N,x =

Nl∑
k=1

d

dx

[{
Q̄(k)g(k)(zk)− Q̄(k)g(k)(zk−1)

}
sF
]
. (4.29)

Now the only undefined quantity in Eq. (4.28) is τ (Nl)
xz (zNl) and an expression for this is derived

by calculating τxz at z = zNl using Eq. (4.27). Hence,

τ (Nl)
xz (zNl) =

d

dx

[{
−Q̄(Nl)g(Nl)(zNl) +α(Nl)

}
sF
]

+ T̂b

= −
Nl∑
k=1

d

dx

[{
Q̄(k)g(k)(zk)− Q̄(k)g(k)(zk−1)

}
sF
]

+ T̂b.

Inserting Eq. (4.29) in the above expression gives

τ (Nl)
xz (zNl) = −N,x + T̂b. (4.30)

Therefore, substituting Eq. (4.30) back into the Cauchy equilibrium equation (4.28) we have

N,x +
(
−N,x + T̂b

)
− τ (1)

xz (z0) = 0 (4.31)

and as τ (1)
xz (z0) = T̂b the expression in Eq. (4.31) is satisfied. This is the first significant

finding of the present formulation: as long as Eq. (4.28) is satisfied when deriving the governing

equations from a variational statement, equilibrium of the interfacial and surface shear tractions

is automatically enforced.

An expression for the transverse normal stress is derived in a similar fashion. Integrating

the transverse shear stress of Eq. (4.27) in Cauchy’s transverse equilibrium equation yields

σ(k)
z = −

∫
dτxz
dx

dz =
d2

dx2

[∫ (
Q̄(k)g(k) −α(k)

)
dzsF

]
− T̂b,xz

=
d2

dx2

[{
Q̄(k)h(k) −α(k)z

}
sF
]
− T̂b,xz + b(k) (4.32)

where h(k)(z) captures the variation of σ(k)
z through the thickness of each ply k,

h(k)(z) =

[
z2

2

z3

6

z4

12
· · · m

(k)
,x z3

6
+
c

(k)
,x z2

2

m(k)z3

6
+
c(k)z

2

]
. (4.33)

The Nl layerwise constants b(k) are found by enforcing the Nl − 1 continuity conditions

σ(k)
z (zk−1) = σ(k−1)

z (zk−1) for k = 2 . . . Nl and one of the prescribed surface tractions, i.e. either

the bottom surface σ(1)
z (z0) = P̂b or the top surface σ(Nl)

z (zNl) = P̂t. Hence, by enforcing the

Nl − 1 continuity conditions and σ(1)
z (z0) = P̂b we have

b(k) =
k∑
i=1

d2

dx2

[{
Q̄(i−1)h(i−1)(zi−1)− Q̄(i)h(i)(zi−1) +

(
α(i) −α(i−1)

)
zi−1

}
sF
]

+ T̂b,xz0 + P̂b

b(k) =
d2

dx2

[
β(k)sF

]
+ T̂b,xz0 + P̂b (4.34)
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where by definition Q̄0 = α0 = 0. Thus, substituting the integration constants of Eq. (4.34)

back into Eq. (4.32) gives an expression for the transverse normal stress,

σ(k)
z =

d2

dx2

[{
Q̄(k)h(k) −α(k)z + β(k)

}
sF
]
− T̂b,x (z − z0) + P̂b. (4.35)

In the derivation of Eq. (4.34) the traction condition on the top surface is not enforced

explicitly. However, this condition is automatically satisfied if equilibrium of the transverse

shear stress field Eq. (4.27) and the transverse normal stress Eq. (4.35) is enforced. Integrating

Cauchy’s transverse equilibrium equation in the thickness z-direction,∫ zNl

z0

τxz,xdz +

∫ zNl

z0

σz,zdz = Q,x + σ(Nl)
z (zNl)− σ

(1)
z (z0) = 0 (4.36)

where Q is the transverse shear force. An expression for Q,x is derived by integrating Eq. (4.27)

from the bottom surface of the laminate z = z0 to the top surface z = zNl and differentiating

in the x-direction. Hence,

Q,x =

Nl∑
k=1

d2

dx2

[{
Q̄(k)

(
h(k)(zk−1)− h(k)(zk)

)
+α(k)t(k)

}
sF
]

+

Nl∑
k=1

T̂b,xt
(k) (4.37)

where t(k) is the thickness of the kth layer. An expression for σ(Nl)
z (zNl) is defined by computing

Eq. (4.35) at z = zNl ,

σ(Nl)
z (zNl) =

d2

dx2

[{
Q̄(Nl)h(Nl)(zNl)−α

(Nl)zNl + β(Nl)
}
sF
]
− T̂b,x (zNl − z0) + P̂b

=

Nl∑
k=1

d2

dx2

[{
Q̄(k)

(
h(k)(zk)− h(k)(zk−1)

)
−α(k)t(k)

}
sF
]
−

Nl∑
k=1

T̂b,xt
(k) + P̂b.

Substituting Eq. (4.37) into the above expression gives

σ(Nl)
z (zNl) = −Q,x + P̂b. (4.38)

Finally, Eq. (4.38) is inserted back into Eq. (4.36), such that

Q,x +
(
−Q,x + P̂b

)
− σ(1)

z (z0) = 0 (4.39)

and as σ(1)
z (z0) = P̂b the expression in Eq. (4.39) is satisfied. This is the second significant

finding of the present formulation: as long as Eq. (4.36) is enforced in the variational statement

then equilibrium of the interfacial and surface normal tractions is guaranteed.

The layerwise reduced stiffness term Q̄(k) and through-thickness shape functions in Eqs. (4.27)

and (4.35) are each combined conveniently into single layerwise vectors. Thus,

τ (k)
xz =

d

dx

[
c(k)sF

]
+ T̂b (4.40)

σ(k)
z =

d2

dx2

[
e(k)sF

]
− T̂b,x (z − z0) + P̂b. (4.41)
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4.2.3 A contracted Hellinger-Reissner functional

A new set of governing equations is derived by means of minimising the potential energy func-

tional ΠHR of the HR mixed-variational principle introduced in Eq. (2.19) of Chapter 2. For a

3D continuum independent of variations in the y-direction, the HR functional reads

ΠHR(u,σ) =

∫
V
U∗0 (σij)dV −

∫
S1

ûitidS +

∫
V
ui (σij,j + fi) dV −

∫
S2

ui
(
ti − t̂i

)
dS i, j = x, z.

(4.42)

where U∗0 (σij) is the complementary energy density written in terms of the Cauchy stress ten-

sor σij . The displacements ui are the Lagrange multipliers that enforce Cauchy’s equilibrium

equations σij,j+fi in a variational sense throughout the volume of the continuum, as well as the

traction boundary conditions ti − t̂i on the boundary surface S2. The tractions ti = (σx, σxz)

are the tractions in the (x, z) directions acting on the boundary surface.

In the present work, the model assumption of the axial displacements is given by Eq. (4.10),

i.e. u(k)
x = f (k)

u U , whereas the transverse displacement uz = w0 is constant throughout the thick-

ness. Thus, the term ΠL associated with Cauchy’s equilibrium equations in the HR functional

in the absence of body forces, where L refers to Lagrange multipliers, is written as

ΠL =

∫
V
uiσij,jdV =

∫
V

[
U>f (k)>

u

(
dσ

(k)
x

dx
+

dτ
(k)
xz

dz

)
+ w0

(
dτ

(k)
xz

dx
+

dσ
(k)
z

dz

)]
dV (4.43)

where all quantities are defined as in the previous two sections. Taking the first variation of this

functional with respect to the displacement variables, i.e. δU and δw0 results in the higher-order

equilibrium equations of the theory. By integrating the U-coefficient term in Eq. (4.43) by parts

in the z-direction (note, U is independent of z), and then taking the first variation we have

δΠL1 =

∫∫ t/2

−t/2
δU>

(
f (k)>
u

dσ
(k)
x

dx
− df

(k)>
u

dz
τ (k)
xz

)
dzdx+

∫
δU> f (k)>

u τ (k)
xz

∣∣∣t/2
−t/2

dx

=

∫
δU>

[
dF∗

dx
− T + f (Nl)

>
u (zNl)T̂t − f

(1)>
u (z0)T̂b

]
dx. (4.44)

The vector of stress resultants F∗ used in Eq. (4.44) is defined in the same manner as F in

Eqs. (4.18) and (4.19), i.e.

F∗ =

∫ t/2

−t/2
f (k)>
u σ(k)

x dz (4.45)

but does not contain the stress resultants associated with the derivative of the ZZ function φ(k)
,x as

this term is not included in f (k)
u . Finally, a vector of higher-order shear forces T = (0, Q, . . . , Qφ)

that balances the derivative of the stress resultants F∗ in the higher-order equilibrium equations

has been defined as follows

T =

∫ t/2

−t/2

df
(k)>
u

dz
τ (k)
xz dz. (4.46)

When the first variation is set to zero, the term in square brackets of Eq. (4.44) represents the

collection of equilibrium equations of the equivalent single-layer written in matrix form. These

are the same higher-order equilibrium equations that are derived from the assumed displacement
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field if the PVD is applied. The equilibrium equations and associated Lagrange multipliers for

a first-order theory with ZZ functionality are

δu0 : N,x + T̂t − T̂b = 0

δθ : M,x −Q+ zNl T̂t − z0T̂b = 0

δψ : Mφ
,x −Qφ + φ(Nl)(zNl)T̂t − φ

(1)(z0)T̂b = 0

(4.47)

where the comma notation is used to denote differentiation; N , M and Q are the classical

membrane force, bending moment and transverse shear force respectively, whereas Mφ and Qφ

are the ZZ bending moment and ZZ transverse shear force, respectively.

For a general assumption of displacements u and stresses σ, the entire set of higher-order

equilibrium equations in Eq. (4.44) needs to be satisfied. However, in the present work, the

assumption of the transverse shear stress is based explicitly on the integration of the in-plane

stress in Cauchy’s equilibrium equations. As shown in the following, this means that the equi-

librium equations of Eq. (4.44) are automatically satisfied and do not need to be enforced in

the variational statement. Returning to the definition of the transverse shear stress resultants

of Eq. (4.46) and integrating by parts,

T =

∫ t/2

−t/2

df
(k)>
u

dz
τ (k)
xz dz = f (k)>

u τ (k)
xz

∣∣∣t/2
−t/2
−
∫ t/2

−t/2
f (k)>
u

dτ
(k)
xz

dz
dz. (4.48)

As the model assumption for the transverse shear stresses is derived exactly from Cauchy’s axial

equilibrium equation in Eq. (4.24), we can replace τ (k)
xz,z with −σ(k)

x,x. Hence,

T = f (Nl)
>

u (zNl)T̂t − f
(1)>
u (z0)T̂b +

∫ t/2

−t/2
f (k)>
u

dσ
(k)
x

dx
dz (4.49)

and by using the expression in Eq. (4.45)

T = f (Nl)
>

u (zNl)T̂t − f
(1)>
u (z0)T̂b +

dF∗

dx
. (4.50)

Thus, substituting Eq. (4.50) back into Eq. (4.44), the equilibrium equations in the square

brackets vanish identically when using the present, inherently equilibrated stress assumptions.

However, as was shown in Section 4.2.2, the axial and transverse Cauchy equilibrium equations

need to be satisfied to guarantee that the transverse stresses are recovered accurately. Thus,

these two equations are enforced in a variational sense using two Lagrange multipliers, resulting

in a contracted version of the HR principle with fewer degrees of freedom and less computa-

tional cost. All other higher-order equilibrium equations are automatically satisfied due to the

inherently equilibrated axial and transverse stress assumptions.

The axial and transverse Cauchy equilibrium equations are derived by integrating the equi-

librium equations in the thickness z-direction. Thus,∫ zNl

z0

σx,xdz +

∫ zNl

z0

τxz,zdz = N,x + τ (Nl)
xz (zNl)− τ

(1)
xz (z0) = N,x + T̂t − T̂b = 0 (4.51)
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∫ zNl

z0

τxz,xdz +

∫ zNl

z0

σz,zdz = Q,x + σ(Nl)
z (zNl)− σ

(1)
z (z0) = Q,x + P̂t − P̂b = 0. (4.52)

Next, transverse shear force Q is eliminated from Eq. (4.52) using the first-order moment equi-

librium condition, ∫ zNl

z0

z (σx,x + τxz,z) dz = M,x −Q+ zNl T̂t − z0T̂b = 0

∴ Q = M,x + zNl T̂t − z0T̂b. (4.53)

Therefore, the equilibrium equation (4.52) now reads

M,xx + zNl T̂t,x − z0T̂b,x + P̂t − P̂b = 0. (4.54)

For equilibrium of the system, the first variation of the functional Π must vanish in such a

manner that equilibrium equations (4.51) and (4.54) are satisfied over the whole beam domain

x ∈ [xA, xB]. Following the HR principle this condition is enforced using the displacement

Lagrange multipliers u0 and w0. Hence,

δΠ =δ

[
1

2

∫
V
U∗0 (F)dV −

∫
S1

(
σxû

(k)
x + τxzŵ0

)
dS −

∫
S2

{
u(k)
x (σx − σ̂x) + w0 (τxz − τ̂xz)

}
dS

+

∫
u0

(
N,x + T̂t − T̂b

)
dx+

∫
w0

(
M,xx + zNl T̂t,x − z0T̂b,x + P̂t − P̂b

)
dx

]
= 0 (4.55)

where û(k)
x and ŵ0 are the displacements defined on the boundary surface S1, and σ̂x and τ̂xz

are the tractions defined on the boundary surface S2.

The strain energy U∗0 (F) = σxεx + τxzγxz + σzεz in Eq. (4.55) is written in complementary

form by replacing the strains via a constitutive relation. The quantities σx, τxz and σz are defined

by Eqs. (4.23), (4.40) and (4.41), respectively. The transverse shear strain γ(k)
xz is defined using

the constitutive relation

γ(k)
xz =

τ
(k)
xz

G
(k)
xz

=
1

G
(k)
xz

[
d

dx

(
c(k)sF

)
+ T̂b

]
. (4.56)

The transverse normal strain ε(k)
z is derived from Hooke’s Law, written in terms of the full

compliance matrix Sij in a state of plane strain in y as this is the condition assumed throughout

the model validation in Chapters 5 and 6. Thus,

ε(k)
z = R

(k)
13 σ

(k)
x +R

(k)
33 σ

(k)
z where Rij = Sij −

Si2Sj2
S22

= R
(k)
13 Q̄

(k)f (k)
ε sF +R

(k)
33

[
d2

dx2

(
e(k)sF

)
− T̂b,x (z − z0) + P̂b

]
. (4.57)

The new set of governing equations is derived by substituting all stress and strain expressions

Eqs. (4.23), (4.40), (4.41), (4.56) and (4.57) into Eq. (4.55) and setting the first variation to

zero. The resulting Euler-Lagrange field equations in terms of the functional unknowns u0, w0
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and F are,

δu0 : N,x + T̂t − T̂b = 0 (4.58a)

δw0 : M,xx + zNl T̂t,x − z0T̂b,x + P̂t − P̂b = 0 (4.58b)

δF> : (s+ ηs + ηn)F + (ηsx + ηnx)F,x + (ηsxx + ηnxx)F,xx + ηnxxxF,xxx + ηnxxxxF,xxxx+

T̂bχ
s + T̂b,x (χsx + χnx) + T̂b,xxχ

n
xx + T̂b,xxxχ

n
xxx + P̂bω

n + P̂b,xω
n
x + P̂b,xxω

n
xx + Λeq = 0.

(4.58c)

The pertinent essential and natural boundary conditions are given by,

on C1 δF> :
(
ηsbc + ηnbc

)
F +

(
ηsbcx + ηnbcx

)
F,x + ηnbcxx F,xx + ηnbcxxxF,xxx+

T̂bχ
sbc + T̂b,xχ

nbc
x + T̂b,xxχ

nbc
xx + P̂bω

nbc + P̂b,xω
nbc
x + Λbc1 = Ûbc (4.59a)

on C1 δF>,x : ρnbcF + ρnbcx F,x + ρnbcxx F,xx + T̂b,xγ
nbc
x + P̂bµ

nbc + Λbc2 = Ŵ. (4.59b)

on C2 δU> : F∗ = F̂∗ (4.59c)

on C2 δw0 : Q = Q̂ (4.59d)

Note, the full derivation of the above governing equations, including details of all coefficients,

is given in Appendix A.

The governing field equations and boundary conditions related to δF> are written in matrix

notation, with each row defining a separate equation. Eqs. (4.58c) are an enhanced version of

the 1D CLA constitutive equation for beams, namely{
u0,x

−w0,xx

}
=

[
A B

B D

]−1{
N

M

}
= sF (4.60)

where u0,x and −w0,xx are the reference surface stretching strain and curvature, respectively,

but additionally accounting for higher-order effects in s and F . The members of η are correction

factors related to either transverse shear stresses (superscript s) or transverse normal stresses

(superscript n). The addition of the superscript bc to s and n denotes correction factors for the

boundary equations. Similarly, members of row vectors χ and ω are correction factors related

to the surface shear and normal tractions, respectively. The terms ρ, γ and µ in the second

set of boundary equations δF>,x stem only from transverse normal stresses. Column vectors Λ

only include the Lagrange multipliers u0, w0 and their derivatives. Specifically, Λeq is a column

vector that captures the reference surface stretching strain and curvature,

Λeq =
[
−u0,x w0,xx 0 . . .

]>
. (4.61)

Similarly, Λbc1 and Ûbc are column vectors of the boundary displacement and Kirchhoff rotation,

and prescribed displacement variables, respectively,

Λbc1 =
[
u0 −w0,x 0 . . .

]>
and Ûbc =

[
Ûg 0 ψ̂

]>
. (4.62)

whereas Λbc2 and Ŵ are column vectors that include the unknown field and prescribed boundary
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transverse displacement, respectively,

Λbc2 =
[
0 w0 0 . . .

]>
and Ŵ =

[
0 ŵ0 0 . . .

]>
. (4.63)

The displacement boundary conditions in Eq. (4.59a) indicate that the Kirchhoff rotation nor-

mal to the boundary curve w0,x is modified by transverse shear correction factors. Therefore

the static inconsistency that occurs for Reddy-type models discussed in Chapter 3 is prevented

because the slope of the beam at the support can be non-zero. Finally, the traction boundary

conditions on C2 refer to F∗, which are the stress resultants without the stress resultant asso-

ciated with φ(k)
,x , as previously defined in Eq. (4.45). Finally, the expression in Eq. (4.59a) is

used to determine the deformation vector U of the reference surface from the stress resultants,

whereas the second row of Eq. (4.59b) is used to find an expression for the bending deflection

w0 throughout the entire domain.

4.3 Conclusions

In this chapter the governing equations of a higher-order model for highly heterogeneous,

variable-stiffness beams was derived using a contracted HR functional that only enforces the

membrane and bending equilibrium equations via Lagrange multipliers. All other higher-order

equilibrium equations are automatically satisfied by basing the transverse stresses on integra-

tions of the axial stress. As a result, the number of variables in the model is greatly reduced.

Higher-order fidelity is introduced in the model by a Taylor series expansion of the in-plane

stress field including the effect of ZZ moments.

Section 4.1.2 investigated the fundamental mechanics of the ZZ effect in multilayered struc-

tures. The ZZ effect was attributed to differences in transverse shear strains at layer interfaces

that require discrete changes in the slope of the in-plane deformation field in order to satisfy

the kinematic relations. The dual requirement of transverse shear stress and displacement con-

tinuity at layer interfaces led to the notion of modelling the transverse shear mechanics of a

multilayered structure using a combination of “springs-in-series” and “springs-in-parallel” sys-

tems. Such an approach invariably leads to the RZT ZZ function proposed by Tessler et al. [77],

which is based on the ratios of layerwise transverse shear moduli and the equivalent, average

transverse rigidity of the entire laminate. Hence, this approach incorporates the physical insight

that the ZZ effect is driven by differences in the transverse shear properties through the lami-

nate thickness. Alternatively, MZZF [86], which is extensively used and cited in the literature,

only accounts for differences in layer thicknesses.

The derivation of the HR formulation in Section 4.2 is based on the notion that accurate

transverse shear and normal stress fields can be derived by integrating the axial stresses of

displacement-based higher-order theories in Cauchy’s equilibrium equations. In the present

model this post-processing step is precluded by using these equilibrated 3D stress fields, written

in terms of stress resultants, as a priori model assumptions in the HR variational principle. It

was shown that by enforcing the classical membrane and bending equilibrium equations of an

equivalent single layer in a variational statement using Lagrange multipliers, the interlaminar

continuity conditions and equilibrium of surface tractions are guaranteed.
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Chapter 5

Global and Local Phenomena in

Straight-Fibre Composite Beam Bending

In the previous chapter, the governing equations of a higher-order ZZ theory for highly het-

erogeneous, variable-stiffness beams was derived using a contracted HR functional. Hence, this

functional was derived by enforcing only the classical membrane and bending equilibrium equa-

tions in the PMCE via Lagrange multipliers. All other higher-order equilibrium equations are

automatically satisfied due to the inherently equilibrated stress field assumptions. This model

is now applied to analyse the bending of a comprehensive set of heterogeneous straight-fibre

composite laminates and sandwich beams. The results in this chapter include the benchmarking

of the model against 3D elasticity solutions (Section 5.2), a discussion of the relative effects of

transverse shear, transverse normal and ZZ deformations on the flexural behaviour of straight-

fibre laminates (Section 5.3), and the analysis of boundary layer effects towards clamped edges

(Section 5.4).

A third-order form of the HR model is implemented with two different ZZ functions; MZFF,

denoted by HR3-MZZF and the RZT ZZ function, denoted by HR3-RZT. In the latter case,

Gherlone’s modified version of the RZT ZZ function of Eq. (4.3) is used. A third-order for-

mulation was chosen as the linear z-wise function in the first-order formulation fails to model

higher-order ”stress-channelling” effects towards the outer surface as discussed in Chapter 3.

Furthermore, Carrera [92] has pointed out that including a single ZZ variable gives more accu-

rate results for equal computational effort than multiple higher-order continuous terms. These

findings are corroborated here and suggests that a fifth-order term is not needed to model

higher-order effects that arise in most composite laminates and sandwich beams.

For all results shown herein, the governing equations for HR3-RZT and HR3-MZZF are

derived for laminated beams in plane strain in the lateral y-direction. This condition allows

the results to be compared against Pagano’s 3D elasticity solution [20] of an infinitely wide

plate. However, the HR formulation is readily modified to the application of plane stress by

changing the definition of the stiffness term from Q̄(k) = E(k)
x /

(
1− ν(k)

xy ν
(k)
yx

)
in plane strain to

Q̄(k) = E(k)
x in plane stress, and similarly altering the definition of Rij in Eq. (4.57).

5.1 Load case and model implementation

Consider a multilayered, laminated beam comprising Nl orthotropic, straight-fibre composite

layers as illustrated in Figure 5.1 with the midplane and normal to the beam aligned with the

Cartesian x- and z-axes. The layers can be arranged in any general fashion with different ply

thicknesses, material properties or material orientations. The beam is assumed to be simply
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5.1. Load case and model implementation

supported at the two ends xA = 0 and xB = a as shown in Figure 5.2, and is considered to

undergo isothermal static deformation in plane strain under the applied sinusoidally distributed

load equally divided between the top and bottom surfaces P̂b = −P̂t = q0/2 · sin(πx/a).

z

x

Ptˆ

PbˆxA xB

xˆ
xzˆ

T̂t

T̂b

Figure 5.1: A composite beam loaded by distributed loads on the top and bottom surfaces
and subjected to pertinent boundary conditions at ends A and B.

This boundary value problem is analysed using the governing field equations (4.58). A third-

order expansion of the global displacement and stress field is chosen in order to take account

of the “stress-channelling” effects that arise in highly-orthotropic laminates. Thus, the infinite

series in Eq. (4.9) is truncated after the z3 term, such that there are four global stress resultants

in vector F . For straight-fibre laminates, the ZZ moment associated with φ(k)
,x vanishes as the

ZZ function does not vary along the length of the beam. Furthermore, some of the terms in

governing field equations (4.58) disappear because their associated shear correction coefficients,

e.g. ηnx,η
s
x,η

n
xxx,χ

s,χnxx and ωnx, are purely functions of axial derivatives of material properties.

Variable assumptions that satisfy the simply supported boundary conditions,

Ŵ = F = 0 at x = 0, a. (5.1)

are given by

(w0,F) = (W0,F0) · sin
(πx
a

)
(5.2a)

u0 = U0 · cos
(πx
a

)
(5.2b)

The boundary condition N = 0 at x = 0, a in Eq. (5.1), combined with the absence of surface

shear tractions T̂b = T̂t = 0, means that the membrane force N vanishes over the whole

beam domain. Therefore the membrane force amplitude N0 = 0 in Eq. (5.2a) and equilibrium

equation (4.58a) need not be considered.

Substituting the assumptions in Eq. (5.2) into the governing field equations (4.58b)-(4.58c)

results in six simultaneous algebraic equations with six unknown variables,

v =
[
M0 O0 P0 L0 U0 W0

]>
, (5.3)

hence, bending moment magnitude M0, higher-order membrane force magnitude O0, higher-

order bending moment magnitude P0, ZZ moment magnitude L0, and two displacement mag-
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z

x

Pt = -q0/2 sin ʌx/aˆ

a

A B
Pb = q0/2 sin ʌx/aˆ

Figure 5.2: A simply supported multilayered beam loaded by a sinusoidal distributed load.
This load case is used to assess the accuracies of different HR models with the 3D
elasticity solution of Pagano [20] serving as a benchmark.

Table 5.1: Mechanical properties of materials p (Pagano), m (Murakami), pvc, and h (honey-

comb) nondimensionalised by the in-plane shear modulus G
(h)
12 of material h.

Material
E1

G
(h)
12

E2

G
(h)
12

E3

G
(h)
12

G12

G
(h)
12

G13

G
(h)
12

G23

G
(h)
12

p 25× 106 1× 106 1× 106 5× 105 5× 105 2× 105

m 32.57× 106 1× 106 10× 106 6.5× 105 8.21× 106 3.28× 106

pvc 25× 104 25× 104 25× 104 9.62× 104 9.62× 104 9.62× 104

h 250 250 2500 1 875 1750

Material ν12 ν13 ν23

p 0.25 0.25 0.25
m 0.25 0.25 0.25

pvc 0.3 0.3 0.3

h 0.9 3× 10−5 3× 10−5

nitudes U0 and W0. These equations are readily solved by matrix inversion,

v = K−1q (5.4)

where the stiffness matrix K is comprised of the coefficients of the F , u0 and w0 terms in

Eqs. (4.58b)-(4.58c) and the column load vector q is comprised of the terms associated with T̂b,

T̂t, P̂b and P̂t.

In order to emphasize the effects of transverse shear and ZZ deformability, relatively deep

beams of length-to-thickness ratios t/a = 1 : 8 are considered herein. The material properties

and stacking sequences are shown in Tables 5.1 and 5.2, respectively. Material p was origi-

nally defined by Pagano [20] and is representative of a carbon-fibre reinforced plastic, whereas

material m features increased transverse stiffness and is based on the work by Toledano and

Murakami [168]. Material pvc is a closed-cell polyvinyl chloride foam modelled as an isotropic

material. The honeycomb core h is modelled as transversely isotropic and features significantly

lower transverse shear stiffness than material p to exacerbate the ZZ effect. As all results

in Section 5.2 are presented in nondimensional form, the material properties in Table 5.1 are

nondimensionalised as well, in this case with respect to the shear modulus G12 of material h.
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5.1. Load case and model implementation

Table 5.2: Analysed stacking sequences with t/a = 1 : 8. Laminates A-H are zero B-matrix
layups and laminates I-M are arbitrary layups. Subscripts indicate the repetition
of a property over the corresponding number of layers.

Laminate Thickness Ratio Material Stacking Sequence

A [(1/3)3] [p3] [0/90/0]
B [0.25] [p5] [0/90/0/90/0]
C [0.25] [p5] [90/0/90/0/90]
D [(1/51)51] [p51] [0/(90/0)25]
E [(1/30)3/0.8/(1/30)3] [p3/pvc/p3] [0/90/03/90/0]
F [(1/30)3/0.8/(1/30)3] [p3/h/p3] [0/90/03/90/0]
G [0.12/0.23/0.12] [p2/pvc/h/pvc/p2] [90/05/90]
H [(1/12)12] [p12] [±45/∓ 45/0/902/0/∓ 45/± 45]

I [0.3/0.7] [p2] [0/90]
J [0.254] [p4] [0/90/0/90]
K [0.1/0.3/0.35/0.25] [p2/m/p] [0/90/02]
L [0.3/0.2/0.15/0.25/0.1] [p3/m/p] [0/90/02/90]
M [0.1/0.7/0.2] [m/pvc/p] [03]

The stacking sequences in Table 5.2 are split into a group of zero B-matrix laminates A-H

and general laminates I-M. Laminates A-D are symmetric cross-ply composite laminates with 0◦

and 90◦ layers progressively more dispersed through the thickness. Even though thick blocks of

0◦ and 90◦ plies (as in laminate A) are not commonly used in industry due to transverse cracking

issues, this stacking sequence maximises the ZZ effect for validation purposes. Laminates E-G

are symmetric thick-core sandwich beams with unidirectional or cross-ply outer skins. Lami-

nate G may be considered as a challenging test case in that the sandwich construction maximises

the ZZ effect and the stacking sequence is a combination of three distinct materials. Laminate J

is an example of an anti-symmetrically laminated beam with zero B-matrix terms. As Pagano’s

3D elasticity solution does not include modelling of off-axis anisotropic layers, the ±45◦ plies

were modelled with effective orthotropic material properties using the transformed axial rigid-

ity Q̄(k) and transverse shear moduli Ḡ(k)
xz . Laminates I and J are non-symmetric counterparts

to the cross-ply laminates A-D mentioned above. Finally, laminates K-M are highly hetero-

geneous laminates with general laminations in terms of fibre orientations, ply thicknesses and

layer material properties.

Normalised quantities of the bending deflection w0, axial stress σx, transverse shear stress

τxz and transverse normal stress σz are used as metrics to assess the accuracy of the different

HR models. These normalised quantities are defined as follows:

w̄ =
106t2

q0a4

∫ t
2

− t
2

uz

(a
2
, z
)

dz, σ̄x =
t2

q0a2
σx

(a
2
, z
)
, τ̄xz =

1

q0
τxz (0, z) , σ̄z =

1

q0
σz

(a
2
, z
)

(5.5)

and are calculated at the indicated locations (x, z) of the beam domain. The normalised deflec-

tion w̄ of the HR models is constant through the thickness and thus compared against Pagano’s

normalised average through-thickness deflection.
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5.2. Model validation

5.2 Model validation

The relative percentage errors with respect to Pagano’s 3D elasticity solution of the normalised

metrics w̄, the maximum through-thickness values σ̄maxx and τ̄maxxz for the zero B-matrix lami-

nates A-H are shown in Table 5.3. In each case, errors greater than 3% have been underlined

to indicate an error outside the acceptable accuracy margin. For comparison, the table also

includes the results of a third-order RMVT implementation using the cubic in-plane displace-

ment assumption of Lo, Christensen and Wu [50] (see Eq. (2.25)) enhanced by a ZZ variable,

combined with the piecewise, parabolic transverse shear stress assumption of Murakami [86].

This RMVT implementation with the RZT ZZ function is denoted by RMVT3-RZT, whereas

the MZZF implementation is denoted by RMVT3-MZZF. Similarly, the results for the general

laminates I-M are shown in Table 5.4. To qualitatively compare the stress fields through the

thickness of the laminates, the normalised axial stresses σ̄x and transverse shear stresses τ̄xz are

plotted in Figures 5.3-5.15.

For all laminates analysed herein, the accuracy of HR3-RZT is within 1% for all three

metrics w̄, σ̄maxx and τ̄maxxz . The corresponding through-thickness plots in Figures 5.3-5.15 show

that both axial stress and transverse shear stress profiles are closely matched to Pagano’s 3D

elasticity solution for any type of laminate. Most importantly, the transverse shear stress profile

is captured accurately from the a priori model assumption.

An interesting phenomenon is shown in Figures 5.8b and 5.9b where a reversal of the trans-

verse shear stress in the stiffer face layers is observed. This behaviour only occurs for extreme

cases of transverse orthotropy when the transverse shear rigidity of an inner layer is insuffi-

cient to support the peak transverse shear stress of the adjacent outer layer. In essence, it

is a load redistribution effect that arises because the transverse shear force, i.e. the through-

thickness integral of τxz, remains constant for a specific transverse loading condition regardless

of the stacking sequence. Thus, as the transverse shear orthotropy between different layers is

increased, the transverse shear stress is shifted towards the stiffer layers. The extreme case

of transverse orthotropy occurs when stiffer outer layers are bending independently with fully

reversed transverse shear profiles, i.e. the inner core carries no transverse shear loading.

Moreover, the through-thickness plots of σ̄z in Figures 5.16-5.22 show that the transverse

normal stress field is also modelled accurately using the HR3-RZT model. Thus, the results

presented here suggest that the HR3-RZT model provides accurate 3D stress field predictions

to within nominal errors of Pagano’s 3D elasticity solution for arbitrarily laminated, thick,

anisotropic composite and sandwich beams without the need for stress recovery post-processing

steps. At the same time, the computational expense of the model is relatively benign compared

to layerwise and 3D FEM models as the number of variables is independent of the number of

layers.

The accuracy of the HR3-MZZF formulation is within the same range as HR3-RZT for

most laminates, and for cross-ply laminates A, B, D and I the results are identical. Small

discrepancies exist for cross-ply laminates C and J because of the presence of EWLs which are

not taken account of in MZZF. For laminates with at least three unique plies, the HR3-MZZF

model generally gives less accurate results for all three metrics w̄, σ̄maxx and τ̄maxxz (laminates

E, F, G, H, K, L and M). For laminates E, K and M the difference between the two theories is
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Table 5.3: Zero B-matrix laminates A-H: Normalised results of maximum transverse deflec-
tion, maximum absolute axial stress and maximum absolute transverse shear stress
for Pagano’s solution [20] with model results given by percentage errors. Errors
greater than 3% are underlined.

Laminate Model w̄ σ̄maxx τ̄maxxz

A

Pagano 0.0116 0.7913 3.3167
HR3-RZT (%) 0.06 -0.23 -0.04

HR3-MZZF (%) 0.05 -0.23 -0.04
RMVT3-RZT (%) 0.07 -2.03 0.55

RMVT3-MZZF (%) 0.07 -2.03 0.55

B

Pagano 0.0124 0.8672 3.3228
HR3-RZT (%) 0.07 -0.92 -0.23

HR3-MZZF (%) 0.07 -0.92 -0.23
RMVT3-RZT (%) 0.08 -1.10 -1.40

RMVT3-MZZF (%) 0.08 -1.10 -1.40

C

Pagano 0.0303 1.6307 5.3340
HR3-RZT (%) 0.24 -0.49 0.03

HR3-MZZF (%) 0.24 1.05 0.07
RMVT3-RZT (%) -0.66 -0.48 0.37

RMVT3-MZZF (%) -1.49 0.45 18.06

D

Pagano 0.0154 1.2239 3.6523
HR3-RZT (%) 0.11 0.34 -0.05

HR3-MZZF (%) 0.11 0.34 -0.05
RMVT3-RZT (%) -0.62 -1.15 19.22

RMVT3-MZZF (%) -0.62 -1.15 19.22

E

Pagano 0.0309 1.9593 2.8329
HR3-RZT (%) 0.06 0.02 -0.16

HR3-MZZF (%) 0.09 -0.88 -0.33
RMVT3-RZT (%) 0.13 0.08 31.96

RMVT3-MZZF (%) -1.18 -0.04 218.78

F

Pagano 1.0645 13.9883 8.1112
HR3-RZT (%) -0.28 -0.24 0.05

HR3-MZZF (%) -0.25 7.96 -0.29
RMVT3-RZT (%) -0.32 -0.15 16.74

RMVT3-MZZF (%) -62.92 -54.24 2697.28

G

Pagano 0.4590 6.3417 5.6996
HR3-RZT (%) -0.02 0.02 0.04

HR3-MZZF (%) 7.11 10.66 -0.13
RMVT3-RZT (%) -0.08 0.07 5.53

RMVT3-MZZF (%) -88.80 -70.05 188.93

H

Pagano 0.0224 0.6157 4.0096
HR3-RZT (%) 0.40 0.26 0.05

HR3-MZZF (%) 0.48 2.75 1.07
RMVT3-RZT (%) 0.45 -0.06 -0.26

RMVT3-MZZF (%) -3.15 -0.64 42.11
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Table 5.4: Arbitrary laminates I-M: Normalised results of maximum transverse deflection,
maximum absolute axial stress and maximum absolute transverse shear stress for
Pagano’s solution [20] with model results given by percentage errors. Errors greater
than 3% are underlined.

Laminate Model w̄ σ̄maxx τ̄maxxz

I

Pagano 0.0482 2.0870 4.8799
HR3-RZT (%) 0.64 -0.59 0.17

HR3-MZZF (%) 0.64 -0.59 0.17
RMVT3-RZT (%) 0.57 -1.84 0.41

RMVT3-MZZF (%) 0.57 -1.84 0.41

J

Pagano 0.0195 1.2175 4.3539
HR3-RZT (%) 0.36 -0.94 0.06

HR3-MZZF (%) 0.36 0.67 0.10
RMVT3-RZT (%) -0.39 -2.22 3.71

RMVT3-MZZF (%) -0.81 -0.69 11.38

K

Pagano 0.0100 0.9566 4.1235
HR3-RZT (%) 0.39 -0.06 -0.48

HR3-MZZF (%) 0.39 0.19 0.11
RMVT3-RZT (%) -5.48 -4.42 8.95

RMVT3-MZZF (%) -0.67 -1.05 13.56

L

Pagano 0.0115 1.0368 3.8037
HR3-RZT (%) 0.29 0.61 -0.12

HR3-MZZF (%) 0.53 6.16 0.17
RMVT3-RZT (%) 0.12 0.05 0.91

RMVT3-MZZF (%) -12.48 -3.93 195.58

M

Pagano 0.0226 1.4902 2.8969
HR3-RZT (%) 0.05 0.51 -0.06

HR3-MZZF (%) 0.06 1.11 0.05
RMVT3-RZT (%) 0.03 0.47 -0.22

RMVT3-MZZF (%) 0.05 0.98 3.91
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(b) Normalised transverse shear stress, τ̄xz

Figure 5.3: Laminate A: Through-thickness distribution of the normalised axial stress and
transverse shear stress.
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(b) Normalised transverse shear stress, τ̄xz

Figure 5.4: Laminate B: Through-thickness distribution of the normalised axial stress and
transverse shear stress.
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(b) Normalised transverse shear stress, τ̄xz

Figure 5.5: Laminate C: Through-thickness distribution of the normalised axial stress and
transverse shear stress.
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(b) Normalised transverse shear stress, τ̄xz

Figure 5.6: Laminate D: Through-thickness distribution of the normalised axial stress and
transverse shear stress.
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(b) Normalised transverse shear stress, τ̄xz

Figure 5.7: Laminate E: Through-thickness distribution of the normalised axial stress and
transverse shear stress.
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(b) Normalised transverse shear stress, τ̄xz

Figure 5.8: Laminate F: Through-thickness distribution of the normalised axial stress and
transverse shear stress.
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(b) Normalised transverse shear stress, τ̄xz

Figure 5.9: Laminate G: Through-thickness distribution of the normalised axial stress and
transverse shear stress.
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(a) Normalised axial stress, σ̄x
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(b) Normalised transverse shear stress, τ̄xz

Figure 5.10: Laminate H: Through-thickness distribution of the normalised axial stress and
transverse shear stress.
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(a) Normalised axial stress, σ̄x
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(b) Normalised transverse shear stress, τ̄xz

Figure 5.11: Laminate I: Through-thickness distribution of the normalised axial stress and
transverse shear stress.
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(a) Normalised axial stress, σ̄x
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(b) Normalised transverse shear stress, τ̄xz

Figure 5.12: Laminate J: Through-thickness distribution of the normalised axial stress and
transverse shear stress.

90



5.2. Model validation

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalised axial stress, σ
x

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

 

 

Pagano
HR3−RZT
HR3−MZZF
RMVT3−RZT
RMVT3−MZZF

(a) Normalised axial stress, σ̄x
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(b) Normalised transverse shear stress, τ̄xz

Figure 5.13: Laminate K: Through-thickness distribution of the normalised axial stress and
transverse shear stress.
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(a) Normalised axial stress, σ̄x
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(b) Normalised transverse shear stress, τ̄xz

Figure 5.14: Laminate L: Through-thickness distribution of the normalised axial stress and
transverse shear stress.
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(a) Normalised axial stress, σ̄x

−3 −2.5 −2 −1.5 −1 −0.5 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalised transverse shear stress, τ
xz

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

 

 

Pagano
HR3−RZT
HR3−MZZF
RMVT3−RZT
RMVT3−MZZF

(b) Normalised transverse shear stress, τ̄xz

Figure 5.15: Laminate M: Through-thickness distribution of the normalised axial stress and
transverse shear stress.

marginal, whereas for laminates F, G, H and L the error in σ̄maxx of HR3-MZZF is an order of

magnitude greater than for HR3-RZT. In fact, the HR3-MZZF error in σ̄maxx for laminates F, G

and L, and w̄ for laminate G is more than double the 3% threshold. Furthermore, Figures 5.10a

and 5.14a show that for laminates H and L there are visible discrepancies in the σ̄x through-

thickness profile with respect to Pagano’s solution. The numerical errors in Table 5.3 and

Table 5.4 suggest that HR3-MZZF captures the maximum value of the transverse shear stress

through the thickness accurately for all laminates. However, the through-thickness profiles

show that this is not generally the case for throughout the entire thickness. For example, in

Figure 5.9b the transverse shear stress is accurately captured in the outer 0◦ p-layers of laminate

G, whereas there are visible discrepancies in the stress profiles of all other layers.

The inherently equilibrated model assumption for transverse shear stress in the HR model

gives superior results to Murakami’s [86] model assumption used in the RMVT formulation.

The transverse shear stress profiles for laminates with a small number of layers, such as A, B,

I and M, follow Pagano’s solution closely for both RMVT3-RZT and RMVT3-MZZF. As the

number of layers increases, the transverse shear profiles of both formulations oscillate around

the 3D elasticity solution, and this is most clearly shown in Figure 5.6b. For laminates E, F,

G, H and L, the oscillations in the RMVT3-MZZF solution significantly increase the maximum

value of the transverse shear stress τ̄maxxz as indicated by the 2700% error for laminate F in

Table 5.3.

In RMVT, two independent assumptions are made for the displacement and transverse shear

stress fields, and these are enforced to be kinematically compatible in the variational statement.

However, as was shown in Section 4.1, the ZZ effect in the displacement field is directly related

to the presence of C1-discontinuous transverse shear strains that result from continuity require-

ments on transverse shear stresses at layer interfaces, and, as such, the independence of the two

fields is not absolute. Whereas the minimisation of the strain energy in RMVT guarantees that
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(a) σ̄z Laminate A
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(b) σ̄z Laminate B

Figure 5.16: Through-thickness distribution of the normalised transverse normal stress for
laminates A and B.

the geometric and assumed model shear strains are compatible, there is no such condition on

equilibrium between the axial stress and the transverse shear stress. In the HR functional, the

situation is reversed in that compatibility of geometric and assumed model strains is not guar-

anteed, whereas equilibrium of stresses is enforced. In terms of deriving accurate stress fields,

which are the critical measures for failure analyses, it seems that enforcing the equilibrium of

stresses leads to better results than enforcing displacement compatibility, and hence, the HR

formulation performs better than RMVT for this purpose.

As discussed above, the RMVT3-RZT through-thickness profiles of τ̄xz show major discrep-

ancies compared with Pagano’s solution. On the other hand, the through-thickness plots of σ̄x

closely match Pagano’s solution. Thus, the RMVT3-RZT axial stress fields may be integrated

in the equilibrium equations to compute more accurate transverse stresses, a step which was

advised by Toledano and Murakami in their original papers on RMVT [168], and was later

reinforced by Carrera [169]. The third-order HR formulation introduced herein features seven

functional unknowns, whereas the third-order RMVT formulation only features six variables.

Thus, the overall computational efficiency of the RMVT formulation with respect to the HR

formulation depends on the computational effort involved in this extra post-processing step.

Finally, consider Figures 5.8a, 5.9a and 5.14a, which show significant discrepancies between

the RMVT3-MZZF through-thickness profiles of σ̄x compared to Pagano’s solution. Combined

with the previous observations that the HR3-RZT model is more accurate than the HR3-MZZF

model, these findings corroborate the comments by Gherlone [54] that MZZF may lead to infe-

rior results for some laminates. This occurs because the RZT ZZ function is based on transverse

shear properties and layer thicknesses, which are the actual drivers behind the ZZ effect (see

Section 4.1), whereas MZZF only accounts for the relative thicknesses of different layers. In

fact, Toledano and Murakami point out in their original work that the “inclusion of the zig-zag

shaped C0 function was motivated by the displacement micro-structure of periodic laminated
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(a) σ̄z Laminate C

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalised transverse normal stress, σ
z

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)
 

 

Pagano
HR3−RZT
HR3−MZZF

(b) σ̄z Laminate D

Figure 5.17: Through-thickness distribution of the normalised transverse normal stress for
laminates C and D.
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(a) σ̄z Laminate E

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalised transverse normal stress, σ
z

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

 

 

Pagano
HR3−RZT
HR3−MZZF

(b) σ̄z Laminate F

Figure 5.18: Through-thickness distribution of the normalised transverse normal stress for
laminates E and F.
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(a) σ̄z Laminate G
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(b) σ̄z Laminate H

Figure 5.19: Through-thickness distribution of the normalised transverse normal stress for
laminates G and H.

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalised transverse normal stress, σ
z

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

 

 

Pagano
HR3−RZT
HR3−MZZF

(a) σ̄z Laminate I
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(b) σ̄z Laminate J

Figure 5.20: Through-thickness distribution of the normalised transverse normal stress for
laminates I and J.
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(a) σ̄z Laminate K
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(b) σ̄z Laminate L

Figure 5.21: Through-thickness distribution of the normalised transverse normal stress for
laminates K and L.
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Figure 5.22: Through-thickness distribution of the normalised transverse normal stress for
laminate M.
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composites”, and that “for general laminate configurations, this periodicity is destroyed”, such

that the “theory should be expected to break down in these particular cases” [168]. Over-

all, MZZF results in nominal errors for most commonly used laminates when employed in a

third-order theory coupled with the HR mixed-variational statement. However, for sandwich

beams with very flexible cores or heterogeneous laminates comprised of more than three unique

materials, the constitutive independence of MZZF may lead to large errors.

In conclusion, the third-order HR3-RZT formulation is the most accurate of the formulations

investigated herein for predicting bending deflections, axial bending stresses and transverse

bending stresses from a priori model assumptions. This is because the RZT ZZ function is

derived from actual transverse material properties, and because equilibrium of the 3D stresses

is enforced in the variational statement using Lagrange multipliers. The RMVT3-RZT model

provides similar accuracy for axial stresses but requires a posteriori stress recovery step for

accurate transverse shear stresses. In terms of computational efficiency, there is a trade-off

between the extra degree of freedom of the HR3-RZT formulation and the extra post-processing

step required in the RMVT3-RZT formulation.

5.3 Assessment of transverse shear, transverse normal and zig-

zag effects

Previous authors [78, 86, 92] have shown that ignoring the ZZ effect may lead to significant

underestimations of the peak axial and transverse stresses. The inaccuracies are especially

pronounced for sandwich beams because of the large degree of transverse orthotropy between

the flexible core and the stiff face layers. Even though a relatively large thickness to length ratio

of 1:8 was analysed in this study, the ZZ effect is important for longer and thinner sandwich

beams as well.

However, for commonly used composite laminates, the ZZ effect may not be as significant.

Many industrial lamination guidelines prevent the use of thick blocks of same orientation plies

to prevent problems associated with transverse cracking. As such, laminates A-C in Table 5.2

are not representative of typical laminates used in practice, and the results for laminate D in

Figure 5.6 show that dispersing the 0◦ and 90◦ layers throughout the thickness greatly reduces

the ZZ effect.

The relative effects of transverse shear deformation, transverse normal deformation and

the ZZ effect may be analysed numerically using the bending displacement of the HR model.

For simplicity, we examine straight-fibre symmetric laminates (all membrane stress resultants

vanish) and ignore all higher-order bending moments, hence, resulting in a first-order ZZ for-

mulation of the HR model. The transverse pressure acts on the top surface, such that P̂b = 0

and P̂t = q0 sinπx/a, and both ends of the beam are simply supported. To begin, the effect of

ZZ deformation is initially ignored to compare the relative importance of transverse shear and

transverse normal deformation.

Under these assumptions the governing field equations (4.58) of the first-order HR model
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5.3. Assessment of transverse shear, transverse normal and zig-zag effects

are

M,xx + P̂t = 0 (5.6a)

sCLAM + (ηsxx + ηnxx)M,xx + ηnxxxxM,xxxx + w0,xx = 0 (5.6b)

where M is the classic bending moment of CLA. The boundary condition Eq. (4.59b) is required

to calculate the transverse deflection,

uz = ρnbcM + ρnbcxx M,xx + w0 (5.7)

from the bending moment M and Lagrange multiplier w0. The term ρnbcM + ρnbcxx M,xx in

Eq. (5.7) corrects the displacement Lagrange multiplier w0 to account for transverse normal

effects. Note that sCLA = 1/DCLA where D is the classic bending rigidity of CLA, and the

shear correction factors η and ρ are also scalars due to the single unknown stress resultant M .

Using the solution assumption of Eq. (5.2a) and uz = Uz0 sin (πx/a) in Eqs. (5.6) and (5.7)

results in

−M0
π2

a2
+ q0 = 0

sCLAM0 − (ηsxx + ηnxx)
π2

a2
M0 + ηnxxxx

π4

a4
M0 −W0

π2

a2
= 0

ρnbcM0 − ρnbcxx

π2

a2
M0 +W0 = Uz0.

(5.8)

Using the fact that ρnbcxx = ηnxxxx as shown in Eq. (A.8e) in Appendix A, the algebraic system

of equations in Eq. (5.8) is readily solved for bending amplitude Uz0,

Uz0 =
a4

π4

[
sCLA − π2

a2
(ηsxx + ηnxx) +

π2

a2
ρnbc

]
q0. (5.9)

Note, that the transverse normal correction factor ηnxxxx vanishes in the derivation of the bending

deflection Uz0 in Eq. (5.9). Transverse normal deformation only affects the bending displacement

via the boundary condition term ρnbc. Eq. (A.8p) in Appendix A shows that for straight-fibre

laminates, i.e. when all axial derivatives of material properties vanish, ρnbc is a function of the

transverse-axial Poisson’s coupling term R
(k)
13 only, i.e. the transverse normal term R

(k)
33 does

not play a role.

The bending deflection is normalised into three separate entities by dividing by a factor

of q0s
CLAa4/π4. This leads to

w̄ = w̄CLA + w̄TS + w̄TN where

w̄CLA = 1, w̄TS = − ηsxx
sCLA

π2

a2
, w̄TN = −η

n
xx − ρnbc

sCLA
π2

a2
(5.10)

where w̄TS and w̄TN refer to transverse shear and transverse normal deflection components,

respectively. These three factors are plotted against the thickness to length ratio (t/a) in Fig-

ure 5.23 for laminate D. Furthermore, this plot shows a comparison between the total normalised
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Figure 5.23: Laminate D: Change in normalised CLA, transverse shear and transverse normal
bending deflection components versus thickness to length ratio t/a.

deflection w̄ and Pagano’s normalised solution w̄pag. Laminate D is chosen to minimise the ZZ

effect in Pagano’s 3D elasticity solution and therefore allows a fair comparison between w̄ and

w̄pag. The comparison between w̄ and w̄pag shows that the HR model accurately predicts the

bending deflection up to very deep aspect ratios of t/a = 0.4.

Figure 5.23 also shows the parabolic relationship of w̄TS with respect to the beam thickness

ratio t/a, which plays a more significant role than the transverse normal deflection. In fact,

the transverse normal component is negative, i.e. it stiffens the structure. This arises because

w̄TN only captures the Poisson’s effect of σz on the bending deformation, as indicated by the

presence of the Poisson’s term R
(k)
13 in the definition of ρnbc in Eq. (A.8p) in Appendix A.

If normal compressibility effects are to be included, this has to be factored into the initial

assumption of the displacement field in Eq. (4.9) that underlies the derivation of the model.

Therefore the transverse displacement field u(k)
z has to be expanded in a power series of z and

its effect included in the derivation of σ(k)
x via the Poisson’s ratio υzx and strain ε(k)

z . Based on

the excellent correlation of the 3D stress fields between the HR3-RZT and Pagano’s solution in

Figures 5.3-5.15, the argument is made that for laminates with thickness to length ratio of 1:8

such a refinement is not necessary. Although the transverse normal correction factor ρnbc varies

with layup, a numerical study showed that for commonly used carbon- and glass-reinforced

composite and sandwich panels the magnitude of this factor is always negligible compared to

the transverse shear factor ηsxx.

As discussed by Gherlone [54], transverse normal effects are accentuated for moderately thick

laminates when one half of the laminate has significantly less transverse normal stiffness than

the other half. Under these circumstances, transverse normal loading leads to local transverse

normal deformations in the softer regions, and these need to be accounted for as detailed

above. However, for most laminates used in industrial engineering structures, the transverse
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5.3. Assessment of transverse shear, transverse normal and zig-zag effects

normal modulus of the constituent layers is within 8-12 GPa, such that a uniform transverse

displacement assumption is warranted.

Next, the influence of the ZZ effect on the bending behaviour is investigated by ignoring

the effect of transverse normal deformation in the governing field equations (4.58). Under

these conditions, the governing field equations of the HR1-RZT formulation, as derived from

Eq. (4.58), are

M,xx + P̂t = 0

s11M + s12L+ ηsxx11M,xx + ηsxx12L,xx + w0,xx = 0

s12M + s22L+ ηsxx12M,xx + ηsxx22L,xx = 0

(5.11)

where M is the CLA bending moment, L the ZZ moment, and sij and ηsxxij are coefficients of

the bending compliance matrix s and the shear correction matrix ηsxx. Substituting the variable

assumptions Eq. (5.2a) and w0 = WZZ
0 sin (πx/a) into Eqs. (5.11) results in

−M0
π2

a2
+ q0 = 0

s11M0 + s12L0 − ηsxx11
π2

a2
M0 − ηsxx12

π2

a2
L0 −WZZ

0

π2

a2
= 0

s12M0 + s22L0 − ηsxx12
π2

a2
M0 − ηsxx22

π2

a2
L0 = 0.

(5.12)

Next, the algebraic system of equations (5.12) is solved for bending amplitude WZZ
0 to give

WZZ
0 =

s11
a4

π4
−

(
s12

a2

π2 − ηsxx12
)2

s22 − ηsxx22
π2

a2

− ηsxx11
a2

π2

 q0. (5.13)

The bending deflection in Eq. (5.13) is normalised into w̄ZZ by dividing WZZ
0 by the fac-

tor q0s
CLAa4/π4. Hence,

w̄ZZ =
π4

q0sCLAa4

(sCLA + s11 − sCLA
) a4

π4
−

(
s12

a2

π2 − ηsxx12
)2

s22 − ηsxx22
π2

a2

− ηsxx11
a2

π2

 q0

w̄ZZ = 1 +
s11 − sCLA

sCLA
−

(
s12 − ηsxx12

π2

a2

)2

sCLA
(
s22 − ηsxx22

π2

a2

) − ηsxx11
sCLA

π2

a2
. (5.14)

The expression in Eq. (5.14) is separated into three components

w̄ZZ = w̄CLA + w̄ZZCLA + w̄ZZTS where

w̄CLA = 1, w̄ZZCLA =
s11 − sCLA

sCLA
−

(
s12 − ηsxx12

π2

a2

)2

sCLA
(
s22 − ηsxx22

π2

a2

) , w̄ZZTS = −
ηsxx11
sCLA

π2

a2
. (5.15)

Note that the bending flexibility sCLA and s11 are not equal. The two terms are related by a
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Figure 5.24: Ratio of transverse shear components and ratio of total deflection, as calculated
from the HR1-RZT model with and without ZZ effects, versus thickness to length
ratio (t/a) for different laminates in Table 5.2.

constant of proportionality that is independent of the laminate thickness t. The two components

w̄ZZCLA and w̄ZZTS are ZZ bending deformations related to the difference between ZZ and CLA,

and the action of the transverse shear deformation, respectively.

The quantities in Eq. (5.15) are compared to the corresponding bending components that

ignore the ZZ effect in Eq. (5.10). Thus, the total deflection ratio rw = w̄ZZ/w̄ and shear

deflection ratio rTS = w̄ZZTS /w̄TS are used as metrics to assess the influence of the ZZ effect on

the bending displacement. The term w̄ZZCLA can be used as a standalone metric to express the

normalised difference between classic bending deformation, and the deformation of direct ZZ

effects and the coupling effects of ZZ-transverse shear deformations.

Figure 5.24a shows that the ratio of transverse shear components is invariant with t/a but

may vary with the stacking sequence. Furthermore, the ZZ effect always reduces the magnitude

of transverse shear deformation. Figure 5.24b shows that the ZZ effect reduces the overall

bending deflection of all analysed laminates and that this effect is greatest for the two honeycomb

core sandwich beams F and G, i.e. stiffening is most for laminates with the greatest ZZ effect.

For the non-sandwich beams A, D and E, the ZZ effect can be ignored up to t/a = 0.1 which

includes the large majority of composite laminates used in industry. Furthermore, the reduction

in bending displacement is non-linear in t/a and converges to a constant value as the thickness

of the beam approaches the length. In a state of equilibrium, the internal strain energy must

equate to the work done by the external loads. To maintain this balance, the stiffening effect of

the ZZ moments must result in an increase in the internal stress of the beam. The axial stress

plot for sandwich beam F in Figure 5.8a shows exactly this phenomenon; here, the ZZ effect

increases the z-wise slope of the stress field in the outer layers, thereby increasing the maximum

stress magnitude throughout the thickness.

Figure 5.25 plots the ZZ deformation metric w̄ZZCLA versus the thickness to length ratio t/a.
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Figure 5.25: Normalised ratio w̄ZZCLA of classic bending deformation to the deformation of
direct ZZ effects and the coupling of ZZ-transverse shear deformations versus
thickness to length ratio (t/a) for different laminates in Table 5.2. Plot (b) is
the same as plot (a) but over s smaller range of t/a values.

The figure shows that the term is initially positive for small values of t/a and then changes sign

for greater values of t/a. The w̄ZZCLA term vanishes when the ZZ effect is ignored, which means

that for small values of t/a, when w̄ZZCLA is positive, the ZZ stiffness and ZZ-transverse shear

coupling terms are reducing the rigidity of the beam, i.e. making it more flexible. However,

because Figure 5.24b shows that the ZZ effect always decreases the total deflection w̄ZZ0 of the

beam, i.e. increasing the stiffness, this reduction must be a result of the decreased effect of

direct transverse shear deformation (Figure 5.24a) when ZZ effects are important.

In conclusion, the stiffness term associated with ZZ deformation reduces the classic bending

rigidity of the beam, but at the same time increases the transverse shear rigidity (Figure 5.24a).

The increase in transverse shear rigidity outweighs the reduction in classic bending rigidity and

therefore the total deflection decreases (Figure 5.24b). Finally, the sum of the two normalised

coefficients w̄ZZCLA and w̄ZZTS , calculated for a specific laminate, can be compared against a known

sandwich beam, and used to gauge the effects of ZZ deformation.

5.4 Modelling boundary layers towards clamped edges

Some authors in the literature have pointed out that models derived from the HR variational

principle can be used to capture boundary layer effects and localised stress gradients towards

boundaries [59]. This is possible because the stresses are treated as fundamental unknowns

and forced to obey Cauchy’s equilibrium equations in the variational statement. This feature

creates a stronger condition than simply post-processing the stresses from the displacement

unknowns in the kinematic and constitutive relations. A second feature particular to the present

work is that the governing field equations are solved in the strong form using the pseudo-
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5.4. Modelling boundary layers towards clamped edges

spectral DQM. This has the advantage that both essential and natural boundary conditions

are enforced explicitly. Thus, the satisfaction of equilibrium and natural boundary conditions

does not depend on the mesh density as is the case in the classic, weak displacement-based

finite element formulations. Hence, the governing field equations are solved at every single grid

point within the domain, rather than in an average sense over the whole domain. Coupled with

the enforcement of Cauchy’s equilibrium equations and the use of stress-based variables, this

means that equilibrium of stresses is guaranteed at each location within the solution domain,

and boundary layer effects are captured more robustly.

z

x

Pt = -q0/2ˆ

a

A BPb = q0/2ˆ

Figure 5.26: A multilayered beam clamped at both ends and loaded by a uniformly distributed
load on the top and bottom surfaces.

The problem presented in Section 5.1 is revisited with the multilayered beam now clamped

at both ends xA = 0 and xB = a with a uniformly distributed load equally divided between

the top and bottom surfaces, i.e. P̂b = −P̂t = q0/2 as shown in Figure 5.26. The clamped

support induces a boundary layer effect in the 3D stress field that is modelled using the HR3-

RZT formulation. Two laminates shown in Table 5.5 are considered, where laminate 1 is a

non-symmetric composite laminate, and laminate 2 is a non-symmetric sandwich beam. Both

beams have thickness-to-length ratio t/a = 1 : 10 and are comprised of materials p and pvc

previously defined in Table 5.1

Following the description of the DQM in Section 2.4, the governing differential equations

are converted into algebraic ones by replacing the differential operators with weighting matrices

that operate on all functional unknowns within the domain. Thus, each differential operator is

converted into a linear weighted sum of the functional unknowns at pre-determined grid points,

such that the system of differential equations is written as a system of algebraic equations in

matrix form. A non-uniform Chebychev-Gauss-Lobatto grid with 31 points is chosen here based

on an initial mesh convergence study.

As shown in Eq. (2.35), the governing field equations Eq. (4.58) are discretised at the

internal grid points, whereas the boundary conditions Eq. (4.59) are discretised at the boundary

points. Both sets of equations are written in terms of two unknown vectors; a vector of internal

field unknowns and a vector of boundary unknowns. In this manner, the complete set of

governing equations is substructured into four matrices that allow the boundary unknowns to

be eliminated, as shown in Eq. (2.36a). Thus, the final matrix inversion problem includes both

the discretised field and boundary equations in one matrix, and is solved for the vector of

internal field unknowns only. The unknowns on the boundary are subsequently post-processed

from the internal field variables and boundary equations using Eq. (2.36b) .
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5.4. Modelling boundary layers towards clamped edges

Table 5.5: Composite laminate and sandwich beam stacking sequences with t/a = 1 : 10 used
to investigate boundary layers. Subscripts indicate the repetition of a property over
the corresponding number of layers.

Laminate t/a Thickness Ratio Material Stacking Sequence

1 1:10 [(1/4)4] [p4] [0/90/0/90]
2 1:10 [(1/8)2/0.5/(1/8)2] [p2/pvc/p2] [0/90/02/90]

The third-order ZZ HR model for straight-fibre laminates has two displacement unknowns

u0 and w0, and five stress unknowns F =
[
N M O P L

]>
, where N and O are the classic

and second-order membrane stress resultants, respectively; M and P are the classic bending

moment and second-order bending moment, respectively; and L is the ZZ moment.

For the load case shown in Figure 5.26, the stress resultants do not vanish at the clamped

ends x = 0 and x = a but all displacements vanish, i.e. Ûbc = 0, such that the boundary

condition Eq. (4.59a)(
ηsbcx + ηnbcx

)
F,x + ηnbcxxxF,xxx + T̂bχ

sbc + T̂b,xxχ
nbc
xx + P̂b,xω

nbc
x + Λbc1 = 0 (5.16)

needs to be satisfied. Note, that the shear and normal correction factors in Eq. (4.59a) that

only depend on variable-stiffness properties are eliminated in Eq. (5.16). Furthermore, the axial

derivatives of the membrane stress resultant N,x = 0 at the clamped ends as the membrane

stress resultant does not vary along the length of the beam for the current load case. However,

the axial derivatives of all other stress resultants remain undefined. Therefore, the boundary

condition in Eq. (4.59b) is split into the following two parts,

N,x = 0 from δF>,x = 0 (5.17a)


ρnbc21 ρnbc22 ρnbc23 ρnbc24 ρnbc25

ρnbc31 ρnbc32 ρnbc33 ρnbc34 ρnbc35

ρnbc41 ρnbc42 ρnbc43 ρnbc44 ρnbc45

ρnbc51 ρnbc52 ρnbc53 ρnbc54 ρnbc55





N

M

O

P

L


+


ρnbcxx21 ρnbcxx22 ρnbcxx23 ρnbcxx24 ρnbcxx25

ρnbcxx31 ρnbcxx32 ρnbcxx33 ρnbcxx34 ρnbcxx35

ρnbcxx41 ρnbcxx42 ρnbcxx43 ρnbcxx44 ρnbcxx45

ρnbcxx51 ρnbcxx52 ρnbcxx53 ρnbcxx54 ρnbcxx55





N,xx

M,xx

O,xx

P,xx

L,xx



+ T̂b,x


γnbcx2

γnbcx3

γnbcx4

γnbcx5

+ P̂b


µnbc2

µnbc3

µnbc4

µnbc5

+


w0

0

0

0

 = 0 (5.17b)

where the first equation associated with membrane stress resultantN is not included in Eq. (5.17b)

because it satisfies the condition in Eq. (5.17a). Thus, by writing the governing field equa-

tions (4.58) and boundary conditions Eq. (5.16) and (5.17) in DQ matrix form, the functional

unknowns at the DQ grid points are found using standard matrix operations. In the present

work the numerical solution procedure was implemented in Matlab.

As Pagano’s 3D elasticity solution [20] is only valid for simply supported beams, a 3D
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Figure 5.27: Laminate 1: Through-thickness plot of normalised axial stress σ̄x at locations
5% and 10% of the beam span from clamped end xA.
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Figure 5.28: Laminate 1: Through-thickness plot of normalised axial stress σ̄x at locations
15% and 20% of the beam span from clamped end xA.
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Figure 5.29: Laminate 1: Through-thickness plot of normalised transverse shear stress τ̄xz at
locations 5% and 10% of the beam span from clamped end xA.
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Figure 5.30: Laminate 1: Through-thickness plot of normalised transverse shear stress τ̄xz at
locations 15% and 20% of the beam span from clamped end xA.
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Figure 5.31: Laminate 1: Through-thickness plot of normalised transverse normal stress σ̄z
at locations 5% and 10% of the beam span from clamped end xA.
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Figure 5.32: Laminate 1: Through-thickness plot of normalised transverse normal stress σ̄z
at locations 15% and 20% of the beam span from clamped end xA.
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Figure 5.33: Laminate 2: Through-thickness plot of normalised axial stress σ̄x at locations
5% and 10% of the beam span from clamped end xA.

−0.2 −0.1 0 0.1 0.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

Normalised axial stress, σ
x

3D FEM
HR3−RZT

(a) σ̄x at 15%

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

Normalised axial stress, σ
x

3D FEM
HR3−RZT

(b) σ̄x at 20%

Figure 5.34: Laminate 2: Through-thickness plot of normalised axial stress σ̄x at locations
15% and 20% of the beam span from clamped end xA.
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Figure 5.35: Laminate 2: Through-thickness plot of normalised transverse shear stress τ̄xz at
locations 5% and 10% of the beam span from clamped end xA.
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Figure 5.36: Laminate 2: Through-thickness plot of normalised transverse shear stress τ̄xz at
locations 15% and 20% of the beam span from clamped end xA.
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Figure 5.37: Laminate 2: Through-thickness plot of normalised transverse normal stress σ̄z
at locations 5% and 10% of the beam span from clamped end xA.
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Figure 5.38: Laminate 2: Through-thickness plot of normalised transverse normal stress σ̄z
at locations 15% and 20% of the beam span from clamped end xA.
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FEM model is used to verify the results. The beam is modelled in the commercial software

package Abaqus using a 3D body 1000 mm long, 100 mm thick and 1 mm wide that is meshed

with 96,000 C3D8R brick elements, i.e. 160 elements through the thickness, 600 elements along

the length and 1 element across the width. This choice was based on initial convergence studies

that ensured that all plotted results converge to within 0.1%. The plane strain condition in the

width direction is enforced by using a single element in this direction and by restraining the

lateral edges from expanding. A load of P̂b = −P̂t = 50 kPa is applied as a pressure loading on

the top and bottom surfaces. Finally, all nodal degrees of freedom are constrained throughout

the thickness of two clamped edges.

The three stress fields σx, τxz and σz are normalised using the expressions in Eq (5.5). The

through-thickness distributions of these three stress fields are plotted in Figures 5.27-5.38 at

the four locations 5%, 10%, 15% and 20% of the beam length from the clamped end xA of the

beam. The nearest position of 5% to the clamped end was chosen to minimise the effect of the

boundary singularity on the 3D FEM results. The stress plots of HR3-RZT and 3D FEM are

well-correlated in Figures 5.27-5.38, although the correlation is not quite as good as between

Pagano’s 3D elasticity solution [20] and HR3-RZT in Section 5.2. As Pagano’s model is an

exact closed-form solution to the 3D elasticity problem, and further refinements in the mesh

density did not seem to cause further convergence in the 3D FEM results, it is conjectured that

certain inaccuracies appear in the 3D FEM results that lead to this inferior correlation. A more

detailed discussion of these arguments is presented in Sections 6.3 and 6.4.

To begin, consider the results for laminate 1. Figures 5.27-5.32 show a clear and definite

change in the through-thickness profile of all three stress fields at different locations from the

clamped support. The clamped laminate 1 investigated here has the same stacking sequence as

the simply supported laminate J studied in Section 5.2. The through-thickness profile of τ̄xz at

the 20% location for laminate 1 (Figure 5.30b) is the same as the τ̄xz profile at the supports of

laminate J (Figure 5.12b). The zero-stress natural boundary condition in the simply supported

beam does not induce a boundary layer close to the supports, and therefore the plot for the

20% location in Figure 5.30b represents the converged solution free of boundary layer effects.

Close to the clamped ends, e.g. at the 5% location in Figure 5.29a, the non-zero natural

boundary condition induces a boundary layer and this results in a change in shape of the

transverse shear stress profile. The maximum τ̄xz magnitude is redistributed from the midplane

towards the surfaces, causing a reversal in the transverse shear stress profile with smaller stress

magnitudes towards the midplane. This behaviour was previously observed for sandwich beams,

e.g. laminates F and G in Figures 5.8b and 5.9b, and is attributed to the ZZ effect, i.e. in

these sandwich beams the extremely soft core is unable to support the transverse shear stress

magnitude in the stiff face layers. The [0/90/0/90] stacking sequence of laminate 1 is not

affected by the ZZ phenomenon to the same extent as the sandwich beam. However, the plot in

Figure 5.29a shows that the clamped support condition exacerbates the ZZ deformations within

the laminate towards the boundaries.

The same effect is also evident in the transverse normal stress plots of Figures 5.31-5.32.

The transverse normal stress field at the 20% location in Figure 5.32b has the same shape as

the midspan transverse normal stress of the simply supported laminate J (Figure 5.20b). How-
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Figure 5.39: Bending moment M and ZZ moment L for two different laminates plotted against
axial location x for different thickness to length ratios t/a.

ever, closer to the clamped boundary at the 5% location (Figure 5.31a) the through-thickness

variation of σ̄z changes considerably due to the increased influence of the ZZ effect.

Finally, the plots of the axial stress fields in Figures 5.27-5.28 show that towards the bound-

ary the third-order “stress-channelling” effects decrease. This manifests itself by a reduction of

the cubic z-wise variation of σ̄x between the 20% location in Figure 5.28b and the 5% location

in Figure 5.27a. At the 5% location, the additional linear behaviour of the ZZ effect reduces

the relative magnitude of the cubic through-thickness variation.

Similarly, the plots for sandwich beam laminate 2 in Figures 5.33-5.38 also show that the

through-thickness distributions of the three stress fields change from the 20% to 5% locations.

As discussed above, towards the boundaries the increasing effect of ZZ deformations causes

transverse shear loads to be redistributed from the beam midplane to the surfaces. In fact, the

redistribution of the transverse stresses can be explained intuitively using Cauchy’s equilibrium

equations. Given that the clamped support causes localised axial stress gradients in σx, this

rate of change of σx,x must be balanced by a rate of change τxz,z. Hence, the through-thickness

profile of the transverse shear stress is altered by stress gradients of the axial stress. In the

same manner, the rate of change in τxz in the x-direction leads to an increase in the z-wise rate

of change of σz.

The extent of the boundary layers along the lengths of laminates 1 and 2 are shown graph-

ically in Figure 5.39. The plots show the variation of bending moment M (Figure 5.39a) and

ZZ moment L (Figure 5.39b) with span-wise location x along the beams. According to the

equilibrium of moments and transverse forces, the bending moments M for laminates 1 and 2

are prescribed fully by the loading and boundary conditions and are independent of stacking

sequence. Thus, the bending moments show no observable local variations towards the bound-

aries. However, the ZZ moments L of the two laminates are not the same due to the different

degrees of transverse anisotropy inherent in the stacking sequences. Furthermore, there is an
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Figure 5.40: Laminate 1: Comparison of through-thickness plots of normalised transverse
shear stress τ̄xz and transverse normal stress σ̄z at locations 0.5%, 5% and 20%
of the beam span from clamped end xA with t/a = 1 : 200.

observable boundary layer effect as L transitions from the global sinusoidal curve, that also

governs the bending moment M , to local high-order behaviour towards the two ends x = 0 and

x = 1.

The boundary layer effect observed here is a higher-order phenomenon that depends on the

magnitude of ZZ deformations within the structure. Based on the findings in Section 5.3, this

means that the boundary layer effect scales with the thickness to length ratio t/a and with

the degree of transverse anisotropy. For example, consider laminates 1 and 2 with reduced

thickness to length ratio t/a = 1 : 200. The axial plots of the ZZ moment L for these two

thinner configurations are shown alongside the plots for the originally thicker configurations

(t/a = 1 : 10) in Figure 5.39b. The relative magnitudes of the bending moments M and ZZ

moments L are not reduced as the thickness to length ratio is decreased from t/a = 1 : 10 to

t/a = 1 : 200. However, in the thinner configuration the boundary layers between x ∈ [0, 0.15]

and x ∈ [0.85, 1] are no longer present. Thus, reducing the thickness to length ratio has not

impacted the magnitude of the ZZ moment but eliminated the boundary layer effects associated

with it.

The through-thickness plots of τ̄xz and σ̄z at locations 0.5%, 5% and 20% for the thinner

configurations (t/a = 1 : 200) are compared in Figures 5.40-5.41. Compared to the plots for

the thicker laminates (t/a = 1 : 10), there is no observable boundary layer effect between the

shape of the 5% and 20% curves of both τ̄xz and σ̄z. Because the transverse shear force varies

with location, the magnitudes of τ̄xz in Figures 5.40a and 5.41a are different, but the overall

through-thickness shape remains the same. However, there is a visible difference between the

curves of τ̄xz and σ̄z at the 0.5% and 5% locations. Thus, compared to the thicker configurations

of laminates 1 and 2, the length of the boundary layer from the clamped support has decreased

with the thickness to length ratio. This reduction in the boundary layer length is also visible in
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Figure 5.41: Laminate 2: Comparison of through-thickness plots of normalised transverse
shear stress τ̄xz and transverse normal stress σ̄z at locations 0.5%, 5% and 20%
of the beam span from clamped end xA with t/a = 1 : 200.

the axial variation of the ZZ moment L in Figure 5.39b. When t/a = 1 : 200, the local variation

of L is constrained to a much smaller interval close to the boundary than when t/a = 1 : 10.

Second, consider the effects of maintaining the thickness to length ratio of laminate 1 at

t/a = 1 : 10 but reducing the transverse anisotropy through the thickness. This is achieved

by reducing the ratio G13/G23 of material p from 2.5 : 1, as originally defined in Table 5.1,

to a lesser ratio of 1.01 : 1, i.e. transverse shear stiffness orthotropy between the 0◦ and 90◦

layers is almost removed completely. Figure 5.42 shows that in this case the magnitude of the

ZZ moment is much smaller than the higher-order moment O. Furthermore, compared to the

case of greater orthotropy ratio in Figure 5.39b, the local boundary layer of ZZ moment L

close to the supports is also reduced. Therefore, the boundary layer effect associated with the

ZZ moment is not only reduced for a lower thickness to length ratio t/a, but also when the

transverse orthotropy ratio is decreased.

However, Figure 5.43 shows that the through-thickness shapes of τ̄xz and σ̄z do undergo

changes in shape at different locations from the clamped boundary, even when the ZZ moment

is benign. This second boundary layer effect is related to the higher-order moment O and

only becomes visible when ZZ effects are negligible. The axial distribution of the higher-order

moment O in Figure 5.42a shows that there is a small boundary layer close to the supports,

which manifests itself by dO/dx ≈ 0 at the boundary. This local change in slope modifies the

z-wise stress profiles between locations 0.5% and 5% shown in Figure 5.43.

Furthermore, the axial variation of higher-order moment O plotted in Figure 5.42a shows

that the local boundary layer in O is eliminated when the thickness to length ratio is reduced

to t/a = 1 : 200. The through-thickness plots of the transverse stress fields τ̄xz and σ̄z in

Figure 5.44 show that a benign boundary layer effect remains. However, the overall change in

shape is considerably reduced and constrained to a much closer region from the boundary, i.e.
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Figure 5.42: Axial variation of higher-order moment O and ZZ moment L for laminate 1 with
reduced transverse orthotropy ratio G13/G23 = 1.01 : 1 of material p.

within x ∈ [0%, 2.5%].

In conclusion, boundary layer effects towards clamped boundaries can arise from higher-

order global moments or from higher-order ZZ moments. These local effects scale in proportion

to the effect of their associated moments on the global behaviour of the structure. When ZZ

moments are important, such as for sandwich panels, the associated boundary layer effects

dominate, and the metrics introduced in Section 5.3 may be used to assess when this is the

case. For laminated structures where the ZZ effects are benign, such as composite laminates

with thin plies evenly distributed through the thickness, boundary layer effects associated with

higher-order moments play a more important role.

These boundary layer effects lead to changes in the z-wise profiles of the 3D stress fields

and the HR formulation is capable of modelling these effects. This capability arises because

the stresses are treated as fundamental unknowns and forced to obey Cauchy’s equilibrium

equations in the variational statement. Second, solving the governing equations in the strong

form using DQM means that equilibrium is guaranteed at every point within the solution

domain. Modelling boundary layers accurately is important for stress-based failure analyses

because stress concentrations arise close to discrete changes in the loading condition, e.g. at

boundary conditions, and the stress gradients at these locations are often the critical drivers in

failure initiation.

5.5 Conclusions

This chapter analysed multiple straight-fibre composite and sandwich beams using the HR

formulation derived in Chapter 4. The accuracy of the model was validated against 3D elasticity

and 3D FEM solutions for a wide range of straight-fibre composite and sandwich beams, and

the excellent correlation of all three stress fields (σx, τxz and σz) with the benchmark solutions
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Figure 5.43: Laminate 1: Comparison of through-thickness plots of normalised transverse
shear stress τ̄xz and transverse normal stress σ̄z at locations 0.5%, 5% and 10%
of the beam span from clamped end xA with t/a = 1 : 10 and reduced transverse
orthotropy ratio G13/G23 = 1.01 : 1 of material p.

−150 −100 −50 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

Normalised transverse shear stress, τ
xz

HR3−RZT 0.25%
HR3−RZT 0.5%
HR3−RZT 2.5%

(a) τ̄xz

0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

Normalised transverse normal stress, σ
z

HR3−RZT 0.25%
HR3−RZT 0.5%
HR3−RZT 2.5%

(b) σ̄z

Figure 5.44: Laminate 1: Comparison of through-thickness plots of normalised transverse
shear stress τ̄xz and transverse normal stress σ̄z at locations 0.25%, 0.5% and
2.5% of the beam span from clamped end xA with t/a = 1 : 200 and reduced
transverse orthotropy ratio G13/G23 = 1.01 : 1 of material p.
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demonstrate the accuracy of the model for commonly used and highly heterogeneous layered

structures. The model was also used to analyse axial boundary layer effects towards clamped

boundaries and to assess the importance of transverse shearing, transverse normal and zig-zag

deformations on the structural behaviour.

The results for the straight-fibre laminates in Section 5.2 showed that a cubic formulation

of the HR model coupled with the RZT ZZ function (HR3-RZT) is the best performing model

considered herein. The bending deflection and three stress fields (σx, τxz and σz) are predicted

to an accuracy within 1% of Pagano’s solution even for highly heterogeneous laminates with

arbitrary thickness ratios, ply material orientations and layer material properties. The results of

the HR3-MZZF model showed that this model can predict the three-dimensional stress fields to

similar accuracy for some laminates. However, for sandwich beams with very soft cores or lami-

nates with three unique materials, the discrepancies between HR3-MZZF and Pagano’s solution

are greater than 10% and therefore significantly higher than for HR3-RZT. The performance of

the HR formulations was also compared to corresponding theories developed using the RMVT.

Whereas the RMVT3-RZT and RMVT3-MZZF give accurate predictions for the bending deflec-

tion and axial stress, the model assumptions for transverse shear stress may be highly inaccurate

when the number of layers exceeds three. As a result, the RMVT formulations require extra

post-processing steps to guarantee accurate transverse stress results. However, compared to the

HR formulation, the RMVT formulation reduces the variable count by one. Thus, the overall

computational efficiency of the RMVT formulation with respect to the HR model, depends on

the effort involved in this extra post-processing step.

The results in Section 5.3 showed that for commonly used non-sandwich beams used in in-

dustry, which prohibit thick blocks of 0◦ and 90◦ plies, the ZZ effect on the structural behaviour

is negligible. In these cases, higher-order effects, such as ”stress-channelling”, i.e. a cubic varia-

tion of the axial stress towards the surfaces of the laminate, are more important. Furthermore,

two nondimensional factors were identified that quantify the influence of the ZZ effect on the

classical bending deflection and transverse shear behaviour. The results show that including

the ZZ effect in the model reduces the effect of transverse shear deformation and generally acts

to stiffen the structure in bending.

Section 5.4 demonstrated that the HR3-RZT model is capable of predicting local variations in

the stress fields towards clamped edges. These boundary layer effects arise due to local variations

in the higher-order stress resultants, i.e. the relative significance of the higher-order effects

increases towards the clamped boundaries. For sandwich beams, the boundary layer effects occur

due to local variations in the ZZ moment, whereas for commonly used composite laminates,

the effects are driven by variations in the higher-order membrane moments. Therefore, the

magnitude of the boundary layer effect is a function of both the transverse anisotropy and the

thickness to length ratio of the laminate.
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Chapter 6

Global and Local Phenomena in

Tow-Steered Composite Beam Bending

In the previous Chapter a higher-order ZZ version of the HR model was benchmarked for

the bending of highly heterogeneous straight-fibre beams. The validation of the HR model’s

accuracy is now extended to variable-stiffness laminates. The combination of variable stiffness

along the length of the beam and high heterogeneity through the thickness present a challenging

test case for a 2D equivalent single-layer model. Based on the good accuracy of the third-

order HR formulations HR3-MZZF and HR3-RZT for straight-fibre laminates presented in the

previous chapter, these two models are also used here for variable-stiffness beams. A detailed

model comparison against 3D FEM solutions, remote from the boundaries, is presented in

Section 6.3, and local boundary layer effects are investigated in Section 6.4. Finally, Section 6.6

presents an optimisation study of a variable-stiffness beam with the aim of tailoring the full 3D

stress field through the thickness, such that a compromise between maximising bending stiffness

and minimising the likelihood of delamination is obtained.

6.1 Load case and model implementation

A multilayered beam with thickness to length ratio t/a = 1 : 10, comprising Nl variable-stiffness

composite layers and clamped at both ends xA = 0 and xB = a, is assumed to undergo isother-

mal, static deformations in plane strain under a uniformly distributed load equally divided

between the top and bottom surfaces P̂b = −P̂t = q0/2, as shown in Figure 6.1. To the au-

thor’s knowledge there are no closed-form 3D elasticity solutions for variable-stiffness beams

in bending. Therefore, high-fidelity 3D finite element models are used to compare the stress

and bending deflection results. A clamped edge load case is chosen herein as this condition is

easily modelled in 3D FEM by constraining all through-thickness nodal degrees of freedom at

the edges. Furthermore, this load case serves to show that the HR formulation does not lead

to static inconsistencies at clamped edges, as was discussed in Chapter 3 for other higher-order

theories in the literature.

Variable-stiffness beams with linear fibre angle variations in the spanwise direction of each

ply k are defined using the notation by Gürdal and Olmedo [101],

α(k)(x) =
2
(
T

(k)
1 − T (k)

0

)
a

∣∣∣x− a

2

∣∣∣+ T
(k)
0 written as 〈T (k)

0 |T
(k)
1 〉 (6.1)

where α(k)(x) is the local fibre angle at coordinate x, and T
(k)
0 and T

(k)
1 are the fibre angles at

the beam midspan x = a/2, and ends x = 0 and x = a, respectively. Hence, the fibre angle in
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6.1. Load case and model implementation

z

x

Pt = -q0/2ˆ

a

A BPb = q0/2ˆ

Figure 6.1: A multilayered, variable-stiffness beam clamped at both ends and loaded by a
uniformly distributed load. This depicts the load case used to validate the HR
formulation for variable-stiffness beams.

Table 6.1: Analysed stacking sequences with t/a = 1 : 10 including symmetric and non-
symmetric variable stiffness composite laminates and sandwich beams. Subscripts
indicate the repetition of a property over the corresponding number of layers.

Laminate Thickness Ratio Material Stacking Sequence

VS A [(1/8)8] [IM78] [±〈90|0〉/± 〈45| − 45〉]s
VS B [(1/8)8] [IM78] [±[〈90|20〉/〈45| − 25〉]]s
VS C [(1/3)3] [IM73] [〈0|90〉/〈90|0〉/〈0|90〉]
VS D [(1/3)3] [IM73] [〈90|0〉/〈0|90〉/〈90|0〉]

VS E [(1/5)5] [IM75]
[〈90|30〉/〈−70|50〉/ . . .
〈60|0〉/〈−25|35〉/〈80|10〉]

VS F [(1/4)4] [IM74] [〈0|70〉/〈90|50〉/〈20| − 40〉/〈50|0〉]
VS G [(1/8)2/0.5/(1/8)2] [p2/pvc/p2] [±〈45| − 45〉/0/∓ 〈45| − 45〉]
VS H [(1/12)4/(1/3)/(1/12)4] [p4/pvc/p4] [±[〈0|90〉/〈90|0〉]/0/∓ [〈90|0〉/〈0|90〉]]
VS I [(1/8)2/0.5/(1/8)2] [p2/pvc/p2] [〈20| − 60〉/〈−20|60〉/0/0/90]

VS J [(1/12)4/(1/3)/(1/12)4] [p4/pvc/p4]
[±〈20| − 60〉/± 〈45| − 45〉/ . . .

0/0/90/± 〈35| − 35〉]

each ply takes the value T
(k)
1 at one end of the beam, is then steered to T

(k)
0 at the beam centre

and returns to T
(k)
1 at the other end of the beam.

The stacking sequences modelled in this section are shown in Table 6.1. This table includes

four symmetrically laminated variable-stiffness composites (VS A - VS D), two non-symmetric

variable-stiffness composite laminates (VS E - VS F), two symmetric sandwich beams with

variable-stiffness face layers (VS G - VS H), and two non-symmetric sandwich beams with

hybrid straight-fibre/variable-stiffness face layers (VS I - VS J).

The stacking sequences include three materials IM7, p and pvc, where IM7 represents

IM7 8852, a material commonly used in industry and defined in Table 6.2. Materials p and

Table 6.2: Mechanical properties of IM7 8552.

Material E1 E2 E3 G12 G13 G23

IM7 163 GPa 12 GPa 12 GPa 5 GPa 4 GPa 3.2 GPa

Material ν12 ν13 ν23

IM7 0.3 0.3 0.3
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6.1. Load case and model implementation

pvc represent the orthotropic lamina and isotropic closed-cell polyvinyl chloride foam that were

previously used in Chapter 5 and are defined in Table 5.1. Material IM7 is exclusively used

for the variable-stiffness laminates VS A - VS F, whereas materials p and pvc are used for the

sandwich beams VS G - VS J.

For the straight-fibre laminates in Chapter 5, trigonometric assumptions were made for dis-

placement unknowns u0, w0 and stress unknowns F that satisfied boundary conditions Eq. (4.59)

exactly and allowed derivations of closed form solutions. In general, such an approach is not

possible for variable-stiffness composites because the variable-stiffness distribution across the

beam can lead to non-intuitive deformation fields that are not accurately modelled by simple

trigonometric functions.

Therefore, the governing field equations (4.58) and associated boundary conditions (4.59)

are solved numerically in the strong form at every point within the discretisation domain using

the pseudo-spectral DQM. This particular solution technique is chosen as DQM has been shown

to be an efficient and robust solution technique for solving both stretching and bending [136],

and stability problems [107] of variable-stiffness composites. Following the description of DQM

in Section 2.4, the governing differential equations are converted into algebraic ones by replacing

the differential operators with weighting matrices that operate on all functional unknowns within

the domain. A non-uniform Chebychev-Gauss-Lobatto grid with 31 points is chosen herein based

on an initial mesh convergence study.

The third-order ZZ HR model for variable-stiffness beams has two displacement unknowns

u0, w0 and six stress unknowns F =
[
N M O P Fφ,x Fφ

]>
, where N and O are the

classic and second-order membrane stress resultants, respectively, M and P are the classic

bending moment and second-order bending moment, respectively, and Fφ and Fφ,x are the ZZ

moments associated with the ZZ function and axial derivative of the ZZ function, respectively.

For the load case shown in Figure 6.1, the stress resultants do not vanish at the clamped

ends x = 0 and x = a, whereas all displacements vanish, i.e. Ûbc = 0, such that the boundary

conditions Eq. (4.59a)

(
ηsbc + ηnbc

)
F +

(
ηsbcx + ηnbcx

)
F,x + ηnbcxx F,xx + ηnbcxxxF,xxx + T̂bχ

sbc + T̂b,xχ
nbc
x +

T̂b,xxχ
nbc
xx + P̂bω

nbc + P̂b,xω
nbc
x + Λbc1 = 0 (6.2)

need to be satisfied. Furthermore, the axial derivatives of the membrane stress resultant N,x

vanishes at the clamped ends, whereas the axial derivatives of all other stress resultants are

undefined. Therefore, the boundary condition in Eq. (4.59b) is split into two parts,

N,x = 0 from δF>,x = 0 (6.3a)
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6.1. Load case and model implementation


ρnbc21 ρnbc22 ρnbc23 ρnbc24 ρnbc25 ρnbc26

ρnbc31 ρnbc32 ρnbc33 ρnbc34 ρnbc35 ρnbc36

ρnbc41 ρnbc42 ρnbc43 ρnbc44 ρnbc45 ρnbc46

ρnbc51 ρnbc52 ρnbc53 ρnbc54 ρnbc55 ρnbc56

ρnbc61 ρnbc62 ρnbc63 ρnbc64 ρnbc65 ρnbc66

F +


ρnbcx21 ρnbcx22 ρnbcx23 ρnbcx24 ρnbcx25 ρnbcx26

ρnbcx31 ρnbcx32 ρnbcx33 ρnbcx34 ρnbcx35 ρnbcx36

ρnbcx41 ρnbcx42 ρnbcx43 ρnbcx44 ρnbcx45 ρnbcx46

ρnbcx51 ρnbcx52 ρnbcx53 ρnbcx54 ρnbcx55 ρnbcx56

ρnbcx61 ρnbcx62 ρnbcx63 ρnbcx64 ρnbcx65 ρnbcx66

F,x+


ρnbcxx21 ρnbcxx22 ρnbcxx23 ρnbcxx24 ρnbcxx25 ρnbcxx26

ρnbcxx31 ρnbcxx32 ρnbcxx33 ρnbcxx34 ρnbcxx35 ρnbcxx36

ρnbcxx41 ρnbcxx42 ρnbcxx43 ρnbcxx44 ρnbcxx45 ρnbcxx46

ρnbcxx51 ρnbcxx52 ρnbcxx53 ρnbcxx54 ρnbcxx55 ρnbcxx56

ρnbcxx61 ρnbcxx62 ρnbcxx63 ρnbcxx64 ρnbcxx65 ρnbcxx66

F,xx + T̂b,x



γnbcx2

γnbcx3

γnbcx4

γnbcx5

γnbcx6


+ P̂b



µnbc2

µnbc3

µnbc4

µnbc5

µnbc6


+



w0

0

0

0

0


= 0.

(6.3b)

where the first equation associated with membrane stress resultants N is not included in

Eq. (6.3b) because it satisfies the condition in Eq. (6.3a). Thus, by writing the governing

field equations (4.58), and boundary conditions Eq. (6.2) and (6.3) in DQ matrix form as de-

fined in Eq. (2.36), the functional unknowns at the DQ grid points are found using standard

matrix operations. In the present work the numerical solution procedure was implemented in

Matlab.

A 3D FEM benchmark model was implemented in the commercial software package Abaqus,

which featured a 250 mm long (x-direction), 1000 mm wide (y-direction) and 25 mm thick

(z-direction) plate that was meshed using a total of 95,880 linear C3D8R elements with 799

elements in the x-direction, 120 elements in the z-direction, and a single element in the y-

direction. Note that the exact dimensions of the 3D FEM model are not important as long as

the thickness to length ratio equals 1 : 10. Furthermore, the magnitude of the external pressure

q0 on the top and bottom surfaces is indefinite as the results presented herein are normalised

with respect to q0.

The plane strain condition in the y-direction is enforced by the high width to length aspect

ratio, the use of a single element in the y-direction and boundary conditions that prevent

the longitudinal sides from expanding laterally. Furthermore, Abaqus’ enhanced hour-glassing

control was chosen in the element settings to prevent numerical ill-conditioning. For all analysed

stacking sequences, mesh convergence studies were carried out to ensure that the number of z-

wise elements was sufficient to guarantee interfacial equilibrium conditions. In general, these

studies showed that at least 10 elements per ply are required for the transverse shear stress fields

of the 3D FEM solution to satisfy interlaminar continuity and equilibrium of surface tractions.

Furthermore, the mesh in the x-direction was increased until all stress fields converged to within

0.1%.

Normalised metrics of the bending deflection w0, axial stress σx, transverse shear stress τxz

and transverse normal stress σz are used to assess the accuracy of the variable-stiffness HR

model. The normalised quantities are defined as follows

w̄ =
106t2

q0a4

∫ t
2

− t
2

uzdz, σ̄x =
t2

q0a2
σx, τ̄xz =

1

q0
τxz, σ̄z =

1

q0
σz (6.4)
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6.2. Comments on variable-stiffness zig-zag function

and are used for all plots shown throughout this section. The normalised deflections w̄ for

the HR formulation are constant through the thickness and thus compared against the average

through-thickness deflection of the 3D FEM solution.

6.2 Comments on variable-stiffness zig-zag function

At this point, a few comments regarding the choice of the ZZ function for variable-stiffness

beams, especially with respect to the numerical implementation in DQM have to be made.

When MZZF is chosen, all stiffness terms, shear correction factors and normal correction factors

associated with Fφ,x vanish because MZZF is independent of material properties. Thus, MZZF

has the advantage of eliminating one degree of freedom from the formulation, albeit at the cost

of losing the capability of capturing an extra higher-order structural effect.

On the other hand, the RZT ZZ function depends on the transverse shear moduli of the

layers within the laminate as defined in Eq. (4.15). When all layers within a laminate have

the same transverse shear modulus, the RZT ZZ function vanishes exactly. A numerical model

based on RZT runs into ill-conditioning problems when the RZT ZZ function is zero, because

this causes all stiffness terms associated with ZZ moments and their associated governing dif-

ferential equations to vanish. As a result, the stiffness matrix includes rows of zeros that lead

to rank deficiency, i.e. there is no unique solution to the inversion problem. Because MZZF is

independent of layer moduli, it does not encounter these numerical issues.

For laminates with variable-stiffness plies, the RZT ZZ function may be finite throughout

the majority of the domain but disappear at certain points when the stacking sequence is locally

unidirectional, i.e. there is no transverse orthotropy. For sandwich beams, this is generally not

an issue as the flexible core always provides a certain degree of transverse orthotropy. Similarly,

the axial derivative of the RZT ZZ function φ(k)
,x may be finite in certain regions of the beam but

vanish at symmetry points of the axial fibre variation. If the fibre angle variations are defined

by Eq. (6.1), then φ(k)
,x = 0 at the midspan and this leads to numerical ill-conditioning of the

governing differential equation associated with ZZ moment Fφ,x .

Furthermore, the stiffness terms in the HR formulation, including all transverse shear and

transverse normal correction factors, are derived from the inverse of the laminate stiffness matrix

S defined in Eq. (4.22). The inversion of S−1 = s can be numerically ill-conditioned if either

φ(k) ≈ 0 or φ(k)
,x ≈ 0. For example, consider a [〈0|90〉/pvc/〈90|0〉] sandwich beam with variable-

stiffness face layers where all layers have equal thickness and pvc represents the foam core.

Figure 6.2a plots the axial variation of φ(VS1)
,x in the top variable-stiffness layer VS1, and the

axial variation of φ(pvc)
,x in the pvc core, at the interface between these two layers. As shown

in Figure 6.2a, the value of φ(VS1)
,x and φ(pvc)

,x is exactly zero at the midspan and close to zero

at the two ends. In fact, this is true for all φ(k)
,x throughout the entire laminate thickness at

these axial locations. This means that the stiffness terms in Sll associated with the ZZ moment

Fφ,x , as calculated from Eq. (4.21), are zero or close to zero at the midspan and the endpoints.

Therefore, the laminate stiffness matrix S cannot be inverted accurately at these points because

the large difference between terms on the leading diagonal cause a singularity in at least one of

the inverted terms.
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Figure 6.2: The presence of φ(k)
,x = 0 at certain points along the beam span, as shown in (a),

leads to a singularity in the compliance matrix s of a [〈0|90〉/pvc/〈90|0〉] laminate,
as shown in (b).

A near singular matrix can be inverted by using techniques, such as the Moore-Penrose pseu-

doinverse [170], by breaking the matrix into blocks with terms of similar orders of magnitude, or

by damping the leading diagonal using the Levenberg-Marquardt coefficient [171,172]. Whereas

these techniques allow computation of an approximate compliance matrix s, they nevertheless

lead to non-physical results when actually solving the associated equilibrium equations. In fact,

the singularity is not eliminated completely by using these techniques but simply reduced in

magnitude. For example, consider the axial distribution of the compliance term sφ,xφ,x for the

[〈0|90〉/pvc/〈0|90〉] sandwich in Figure 6.2b, where sφ,xφ,x is the term on the leading diagonal

of s associated with the ZZ moment Fφ,x . The plot shows the singularities in the compliance

term at the two ends and the midspan of the beam, and this leads to certain knock-on effects.

The higher-order shear and transverse normal correction terms are based on axial derivatives

of the compliance terms s, as shown in Eqs. (A.5) and (A.8), and the high rates of change in

the vicinity of the singularities leads to noise in the computations of these derivatives.

One possible remedy to this problem is to eliminate the degree of freedom Fφ,x at the

locations where φ(k)
,x ≈ 0. However, even finite values of φ(k)

,x can lead to local spikes in the axial

distribution of sφ,xφ,x because the inverse calculation of s = S−1 magnifies local differences in

φ(k)
,x of just one order of magnitude, which is not unlikely for general variable-stiffness sandwich

beams. Second, eliminating degrees of freedom in DQM at certain points within the grid is not

viable as the computation of derivatives is based on all functional values within the grid. This

is akin to the problem of joining elements with different degrees of freedom in FEM.

On the other hand, this issue does not occur for laminates without a symmetry point in

the axial fibre direction. For example, consider a sandwich panel where the two face lay-

ers vary linearly from 20◦ at end xA to 70◦ at end xB, denoted by the laminate notation

[〈20||70〉/pvc/〈20||70〉] herein. The through-thickness plots of the ZZ function φ(k) and axial
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Figure 6.3: ZZ function φ(k) and axial derivative of ZZ function φ(k)
,x plotted through the

thickness of a [〈20||70〉/pvc/〈20||70〉] laminate at the two ends of the beam.
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Figure 6.4: Comparison of various ZZ term products that are used to calculate the stiffness
terms in S plotted through the thickness of a [〈20||70〉/pvc/〈20||70〉] laminate at
the two ends of the beam.
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6.3. Model validation

derivative of the ZZ function φ(k)
,x at the two ends xA and xB are shown in Figure 6.3. This

plots shows that φ(k) and φ(k)
,x are unique and of different magnitudes at the two ends. How-

ever, permutations of these two functions and the moment arm z are related by a constant of

proportionality. For example, the product zφ(k) defines the coupling stiffness term between the

bending moment M and the ZZ moment Fφ, whereas φ(k)2 defines the direct bending stiffness

of ZZ moment Fφ. For a first-order HR ZZ model (HR1-RZT), the stiffness matrices Sgl and

Sll are calculated from Eq. (4.20) and Eq. (4.21) as follows

Sl =

Sgl
Sll

 =



∫
zQ̄(k)φ(k)dz

∫
zQ̄(k)φ(k)

,x dz∫
φ(k)Q̄(k)φ(k)dz

∫
φ(k)Q̄(k)φ(k)

,x dz∫
φ(k)
,x Q̄

(k)φ(k)dz

∫
φ(k)
,x Q̄

(k)φ(k)
,x dz

 . (6.5)

Figure 6.4 shows the ratio of the integrands in the first column of matrix Sl in Eq. (6.5) to

the integrands in the second column of matrix Sl at the two ends xA and xB. In either case, the

integral in the z-direction, i.e. the area enclosed by the curves, is the same for all three ratios.

Therefore, the two columns in matrix Sl of Eq. (6.5) are not independent and the complete

stiffness matrix S is rank deficient, such that the inverse operation s = S−1 is not unique. In

effect, this suggests that including the ZZ displacement ψ and its derivative ψ,x introduces a

redundancy, i.e. the relation between the two variables is known a priori and one of the two

variables can be eliminated.

Thus, this section has elucidated certain shortcomings in incorporating the derivative of the

ZZ function φ(k)
,x in the HR formulation as it introduces numerical instabilities in calculating

the compliance matrix s. This is especially a problem for symmetric fibre variations that are

typically analysed in the literature. It is worth noting that in a typical finite element imple-

mentation φ(k)
,x = 0 as the standard element formulations assume constant material properties

within elements. It is possible to employ screening algorithms that eliminate rows and columns

within the stiffness matrix S that lead to numerical instabilities in the inversion s = S−1. In-

deed, such approaches are often employed in commercial FEM codes when combining elements

with different degrees of freedom, e.g. 2D and 3D elements, but extending these algorithms to

the DQM is beyond the scope of the present work.

Based on these considerations, the effect of stress resultant Fφ,x is neglected henceforth. The

axial derivative of the ZZ function φ(k)
,x does not vanish completely from the model as the shear

correction and normal correction factors are functions of s,x which in turn depends on φ(k)
,x . In

fact, the accuracy of the 3D stress fields for the HR3-RZT model shown in Figures 6.18-6.25

and discussed in the next section, suggest that stress resultant Fφ,x does not play a significant

role in the accuracy of the model for the laminates considered.

6.3 Model validation

To analyse laminates VS A - VS J in Table 6.1, third-order models of the HR formulation

using the RZT ZZ function (HR3-RZT) and MZZF (HR3-MZZF) are implemented in Matlab.
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Figure 6.5: Laminate VS A: Variation of ZZ stiffness term Sφφ and ZZ compliance term sφφ
of the HR3-RZT model along the length of the beam.

Furthermore, a third-order model without the ZZ term (HR3) is also used herein, in order

to qualitatively examine the importance of the ZZ deformations, and assess the magnitude of

errors associated with neglecting the ZZ terms.

As discussed in Section 6.2, the RZT ZZ function changes over the length of a variable-

stiffness beam as it is based on layerwise transverse shear properties. Therefore, the ZZ effect

can be negligible in some regions of the beam and cause numerical ill-conditioning problems

during the matrix inversion s = S−1. For example, consider the axial variation of the direct

ZZ stiffness term Sφφ in Figure 6.5a and the corresponding compliance term sφφ in Figure 6.5b.

The stiffness term Sφφ is close to zero at x = 0.125 and x = 0.875 and the inversion of matrix

S causes two singularities in the variation of sφφ along the beam length. These singularities

produce considerable amount of noise in the numerical computations of derivatives sφφ,x and

the associated transverse shear and transverse normal correction factors around x = 0.125 and

x = 0.875. Due to these sources of numerical noise, the RZT ZZ function is limited in its

application to modelling variable-stiffness laminates using the present HR formulation in the

DQM. Hence, the results for HR3-RZT are only used for sandwich beams VS G - VS J but not

included for the variable-stiffness composite VS B - VS F.

Figures 6.6a, 6.8a, etc. up to 6.24a show plots of the spanwise bending deflection w̄ for

the HR and 3D FEM solutions. The in-plane stress field σ̄x and transverse normal stress field

σ̄z at the midspan of the beam (x = a/2) are plotted in Figures 6.6b, 6.8b, etc. up to 6.24b

and Figures 6.7b, 6.9b, etc. up to 6.25b, respectively. The transverse shear stress τ̄xz at the

quarter-span of the beam (x = a/4) is plotted in Figures 6.7a, 6.9a, etc. up to 6.25a.

Figures 6.6-6.7 illustrate the numerical instabilities regarding the application of HR3-RZT

to variable-stiffness composite laminates mentioned above. The plots show large discrepancies

between the HR3-RZT model and the other 3D FEM and HR results. Whereas the HR3 and

HR-MZZF model correlate well with 3D FEM, the HR-RZT model shows significant errors for
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Figure 6.6: Laminate VS A: Normalised bending displacement and through-thickness distri-
bution of the normalised axial stress (at x = a/2).
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Figure 6.7: Laminate VS A: Through-thickness distribution of the normalised transverse shear
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Figure 6.8: Laminate VS B: Normalised bending displacement and through-thickness distri-
bution of the normalised axial stress (at x = a/2).
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Figure 6.9: Laminate VS B: Through-thickness distribution of the normalised transverse shear
stress (at x = a/4) and normalised transverse normal stress (at x = a/2).
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Figure 6.10: Laminate VS C: Normalised bending displacement and through-thickness distri-
bution of the normalised axial stress (at x = a/2).
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Figure 6.11: Laminate VS C: Through-thickness distribution of the normalised transverse
shear stress (at x = a/4) and normalised transverse normal stress (at x = a/2).
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Figure 6.12: Laminate VS D: Normalised bending displacement and through-thickness distri-
bution of the normalised axial stress (at x = a/2).
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Figure 6.13: Laminate VS D: Through-thickness distribution of the normalised transverse
shear stress (at x = a/4) and normalised transverse normal stress (at x = a/2).
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Figure 6.14: Laminate VS E: Normalised bending displacement and through-thickness distri-
bution of the normalised axial stress (at x = a/2).
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Figure 6.15: Laminate VS E: Through-thickness distribution of the normalised transverse
shear stress (at x = a/4) and normalised transverse normal stress (at x = a/2).
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Figure 6.16: Laminate VS F: Normalised bending displacement and through-thickness dis-
tribution of the normalised axial stress (at x = a/2). The 3D FEM curve is
coincident with all other results and hence not visible in the plot.
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Figure 6.17: Laminate VS F: Through-thickness distribution of the normalised transverse
shear stress (at x = a/4) and normalised transverse normal stress (at x = a/2).
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all displacement and stress fields. For sandwich beams VS G - VS J, this is numerical instability

is not an issue as the flexible core always provides a finite degree of transverse orthotropy over

the length of the beam. In fact, the results for laminates VS G - VS J in Figures 6.18-6.25 show

that the HR3-RZT model provides well-correlated results for the variable-stiffness sandwich

beams.

Overall, Figures 6.6-6.25 show good correlation between the 3D FEM results and the HR

models. For composite laminates VS A - VS F, the ZZ effects are benign as shown by the close

correlation between the HR3 and HR3-MZZF results. This is mainly because the orthotropy

ratio of material IM7 8552 of G13/G23 = 1.25 is relatively close to unity. For some of the

variable-stiffness sandwich beams, e.g. laminates VS G and VS H, that are based on materials

p and pvc with much higher degrees of transverse orthotropy, the HR3 solution maintains

reasonable accuracy compared to the 3D FEM results. However, for the arbitrary sandwich

beams laminate VS J, there are significant inaccuracies in the axial stress and transverse shear

stress plots (Figures 6.24b and 6.25a). Thus, for general sandwich laminations with variable-

stiffness face layers, the ZZ degrees of freedom are required for accurate stress predictions.

The axial stress plots for sandwich beams VS H, VS I and VS J in Figures 6.20b, 6.22b

and 6.24b, respectively, show that the RZT ZZ function is more accurate than MZZF at mod-

elling the 3D stress fields in variable-stiffness sandwich beams. The greatest differences are

observed for the most challenging test case, the non-symmetric sandwich beam VS J. This cor-

roborates the findings in Section 5.2 that the RZT ZZ function is more suitable for arbitrary

laminations as it takes into account the layerwise differences in transverse material proper-

ties. Furthermore, ignoring the ZZ moment associated with the axial derivative of the RZT ZZ

function (Fφ,x) does not seem to adversely affect the accuracy of the HR3-RZT model for the

laminates analysed herein. In fact, the 90◦ variations in fibre angle along the length of the face

layers in the sandwich beams represent a degree of stiffness variation that is greater than the

manufacturing capability of most tow-steering machines. Therefore, the laminates considered

herein are at the extreme case of what is currently manufacturable.

One striking observation between the HR formulation and 3D FEM results is that the ax-

ial stress σ̄x is generally well-correlated, whereas discrepancies are observed for the transverse

stresses τ̄xz and σ̄z. Overall, the correlation between 3D FEM and the HR model for variable-

stiffness beams in this section is inferior to the correlation between Pagano’s 3D elasticity

solution [20] and the HR model for the straight-fibre beams in Chapter 5. Some discrepancy

between Pagano’s solution and 3D FEM is expected because the 3D elasticity solution obeys

both the 3D kinematic and equilibrium equations explicitly, whereas 3D FEM only approxi-

mately guarantees the equilibrium of stresses in a weak sense. Therefore, the 3D FEM solution

has weaker functional constraints when minimising the strain energy in the variational state-

ment. Furthermore, in the displacement-based 3D FEM Abaqus model used herein, stresses

are derived from displacement variables using kinematic and constitutive equations, whereas in

both the HR formulation and Pagano’s solution, individual stress assumptions are made. Due

to the C0-continuity of the linear finite elements, the derivation of stresses from derivatives of

displacement variables leads to more numerical noise than using the functional assumptions in

Pagano’s 3D elasticity or the mixed-variational HR approaches.

134



6.3. Model validation

0 0.2 0.4 0.6 0.8 1

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

Normalised spanwise location, x

N
or

m
al

is
ed

 tr
an

sv
er

se
 d

ef
le

ct
io

n,
 w

 

 

3D FEM
3D FEM Finer Mesh
HR3
HR3−RZT
HR3−MZZF

(a) Normalised transverse displacement, w̄

−0.4 −0.2 0 0.2 0.4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)
Normalised axial stress, σ

x

3D FEM
3D FEM Finer Mesh
HR3
HR3−RZT
HR3−MZZF

(b) Normalised axial stress, σ̄x

Figure 6.18: Laminate VS G: Normalised bending displacement and through-thickness distri-
bution of the normalised axial stress (at x = a/2).
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Figure 6.19: Laminate VS G: Through-thickness distribution of the normalised transverse
shear stress (at x = a/4) and normalised transverse normal stress (at x = a/2).
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Figure 6.20: Laminate VS H: Normalised bending displacement and through-thickness distri-
bution of the normalised axial stress (at x = a/2).
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Figure 6.21: Laminate VS H: Through-thickness distribution of the normalised transverse
shear stress (at x = a/4) and normalised transverse normal stress (at x = a/2).
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Figure 6.22: Laminate VS I: Normalised bending displacement and through-thickness distri-
bution of the normalised axial stress (at x = a/2).
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Figure 6.23: Laminate VS I: Through-thickness distribution of the normalised transverse
shear stress (at x = a/4) and normalised transverse normal stress (at x = a/2).
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(b) Normalised axial stress, σ̄x

Figure 6.24: Laminate VS J: Normalised bending displacement and through-thickness distri-
bution of the normalised axial stress (at x = a/2).
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Figure 6.25: Laminate VS J: Through-thickness distribution of the normalised transverse
shear stress (at x = a/4) and normalised transverse normal stress (at x = a/2).
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6.3. Model validation

This example considers a plane strain case of an infinitely wide plate in the lateral y-direction

and therefore τyz = 0. Due to the finite width of a 3D element, this condition is enforced in

Abaqus using a single element of high aspect ratio that is constrained from expanding in the

y-direction. The 3D FEM results show that τyz = 10−2τxz, and therefore any spurious stress

effects due to the finite width of the 3D brick element can be considered negligible.

In fact, the results for laminates VS F, VS G and VS J show that the 3D FEM model does

not fully obey the traction equilibrium condition on the top and bottom surfaces. Consider the

transverse Cauchy equilibrium equation for a 1D beam in the absence of body forces,

τxz,x + σz,z = 0. (6.6)

In the load case analysed here, the shear tractions applied at the top and bottom surfaces T̂b

and T̂t are zero, i.e. τxz(z = ±t/2) = 0. Due to the uniformity of these shear tractions on the

top and bottom surfaces, the axial derivative of the transverse shear stress also vanishes on the

top and bottom surfaces, i.e. τxz,x(z = ±t/2) = 0. In consideration of Eq. (6.6), this means

that σz,z(z = ±t/2) = 0, i.e. the z-wise derivative of the transverse normal stress σz is zero

on the top and bottom surfaces. The plots of σ̄z in Figures 6.17b, 6.19b and 6.25b show that

σ̄z,z 6= 0 at the surfaces for 3D FEM, whereas the HR model satisfies this boundary condition

for all cases.

The displacement-based, weak formulation of the structural problem in the 3D FEM Abaqus

model, combined with the piecewise-continuous assumption of the displacement variables, are

possible explanations for this shortcoming. The displacement-based formulation inherently

entails that the equilibrium of stresses and natural stress-based boundary conditions are satisfied

approximately in the variational statement. Second, the weak formulation of the 3D FEM model

means that the underlying equilibrium equations and natural boundary conditions are solved in

an average sense across the mesh domain. The FEM solutions rely on increases in mesh density

to enforce the equilibrium of stresses asymptotically.

In fact, the interfacial continuity conditions are satisfied for all 3D FEM plots of τxz and

σz shown in this section. On the other hand, the boundary layers towards the surfaces are

not modelled accurately for some 3D FEM solutions, even when the mesh density is doubled

to 240 through-thickness elements and 1499 lengthwise elements (359,760 elements in total).

This solution is shown by the “3D FEM Lin. Finer Mesh” curve in Figure 6.19b and in the

close-up Figure 6.26 of the boundary layer of laminate VS G. Furthermore, this solution is also

shown as “3D FEM Finer Mesh” in all other plots of Figures 6.16-6.19. The close-up plot of

the boundary layer in Figure 6.26 also shows the results for σ̄z using the original courser mesh

of 95,880 elements but based on quadratic C3D20R elements (“3D FEM Quad.” in Figure 6.26).

The difference compared to the 3D FEM solution using linear C3D8R elements is negligible,

and these quadratic results do not capture the surface boundary layer either. Based on these

observations, it seems that seemingly converged 3D FEM values of σ̄z from Abaqus using very

fine meshes of more than 20 elements per ply, are not guaranteed to satisfy local equilibrium

conditions towards the top and bottom surfaces.

Note that in 3D FEM, stresses are calculated at interior Gauss collocation points, such that

the stresses on the surfaces z = ±t/2 are never calculated explicitly. The through-thickness
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Figure 6.26: Surface boundary layer in the transverse normal stress σ̄z for laminate VS G. 3D
FEM does not capture the local boundary condition σz,z = 0 at the top surface.

mesh density used for all 3D FEM models, places the outermost Gauss points within 0.3% of

the laminate thickness from the outer surfaces. The close-up view of the top surface boundary

layer for laminate VS G in Figure 6.26, shows that the 3D FEM mesh density is sufficiently fine

to capture the local variations of the boundary layer predicted by the HR models. However,

the 3D FEM model clearly does not capture these local variations in σz resulting in differences

of up to 6.7%. The significance of these findings for local failure predictions based on 3D FEM

models in Abaqus, e.g. for impact studies, should be a topic for future investigation.

As discussed in Section 5.4, the HR formulation accurately models boundary layers due

to the enforcement of Cauchy’s equilibrium equations in the variational statement, and this

characteristic contributes to the accurate representation of the z-wise boundary layers observed

here. Furthermore, the HR implementation used herein solves the governing equations in the

strong form, such that all natural stress boundary conditions are enforced explicitly and do not

depend on the choice of mesh density. Based on these observations, it seems that an inherent

degree of error is present in the 3D FEM solution that accounts for some of the discrepancies

with respect to the HR formulation. This hypothesis is examined quantitatively in the following

section.

6.4 Comments on 3D equilibrium conditions and strain energy

The accuracy in satisfying the axial and transverse Cauchy equilibrium equations of laminates

VS A - VS J for the load case introduced in Section 6.1, is assessed using the two residuals R̄x
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6.4. Comments on 3D equilibrium conditions and strain energy

and R̄z defined by

R̄x =
1

q0

∫ t/2

−t/2
(σx,x + τxz,z) dz (6.7)

R̄z =
1

q0

∫ t/2

−t/2
(τxz,x + σz,z) dz (6.8)

which capture the sum of the equilibrium residuals throughout the thickness of the beam,

normalised by the applied loading magnitude q0. Thus, these metrics do not assess the local

equilibrium of stresses at every z-wise location through the beam but rather give an overall

measure of accuracy for every axial domain point.

Second, the transverse equilibrium equation at the top surface of the beam z = t/2 is tested

explicitly using the normalised residual R̄tz defined by

R̄tz =
1

q0
(τxz,x + σz,z)

∣∣∣∣
z= t

2

. (6.9)

This latter metric gives a more detailed measurement of how accurately the models capture the

z-wise boundary layers towards the outside surfaces. The smaller the magnitude of the three

residuals R̄x, R̄z and R̄tz the more accurately the results satisfy Cauchy’s equilibrium equations.

For the HR model, the derivatives of the stresses and the associated residuals are calculated

directly using DQ weighting matrices in the implemented Matlab code. In the case of 3D FEM,

the stress fields are exported from Abaqus using a Python script and then imported into Matlab

in order to calculate the derivatives using Matlab’s internal gradient function. This function

uses central differences for interior data points and single-sided differences for boundary points,

giving second-order accuracy for the former and first-order accuracy for the latter points. Thus,

the local truncation error is proportional to the step size but the error magnitude is kept small

due to the fine x-wise mesh of 799 elements, which results in a step size of order 0.1% of the

beam length. However, it must be pointed out that the computations of axial x-wise derivatives

of the HR and 3D FEM models are different, and therefore the respective results are subjected

to different degrees of numerical error.

Table 6.3 summarises the maximum and minimum magnitudes of the three residuals along

the length of the beam. Individually, the maximum and minimum values indicate the greatest

and least errors in satisfying Cauchy’s equilibrium equations along the beam. Furthermore,

when taken in combination, these two values also provide information about the range of error

inherent in the model.

For composite laminates VS A - VS F, the minimum values of R̄x, R̄z and R̄tz, for both 3D

FEM and the HR solution, are close to zero and of similar orders of magnitude. For sandwich

beams VS G - VS J, the minimum residual of the HR model is up to eight orders of magnitude

less than for the 3D FEM model. However, given the small overall magnitude of the residuals,

these differences are negligible.

However, when the maximum magnitude of the three metrics is taken into account, the

HR model is shown to be more accurate than the 3D FEM model. For every laminate, the

maximum magnitude of residuals R̄x, R̄z and R̄tz is smaller for the HR model than for 3D FEM.
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6.4. Comments on 3D equilibrium conditions and strain energy

Table 6.3: Maximum and minimum values of the normalised residuals of Cauchy’s x- and
z-direction equilibrium equations (R̄x and R̄z, respectively), and the normalised
residual of Cauchy’s z-direction equilibrium equation at the top surface (R̄tz).

Lam. Model min
∣∣R̄x∣∣ max

∣∣R̄x∣∣ min
∣∣R̄z∣∣ max

∣∣R̄z∣∣ min
∣∣R̄tz∣∣ max

∣∣R̄tz∣∣
VS A

3D FEM 0 7.8×10−6 3.9×10−6 4.1 1.1×10−3 6.9×103

HR3-MZZF 4.4×10−13 2.4×10−9 6.7×10−7 6.7×10−5 2.8×10−3 2.7

VS B
3D FEM 0 1.4×10−5 1.7×10−5 4.4 1.7×10−3 7.3×103

HR3-MZZF 2.97×10−13 5.8×10−10 1.6×10−7 6.6×10−5 8.2×10−3 1.1

VS C
3D FEM 0 1.1×10−5 1.3×10−6 1.6×101 2.9×10−3 2.3×104

HR3-MZZF 2.9×10−11 2.7×10−8 3.2×10−7 7.2×10−4 3.7×10−3 2.1×101

VS D
3D FEM 0 8.3×10−6 8.7×10−5 4.2 1.3×10−2 7.0×103

HR3-MZZF 1.5×10−11 1.2×10−7 6.1×10−6 1.2×10−4 1.6×10−1 9.3

VS E
3D FEM 1.7×10−5 8.9×10−1 1.3×10−5 4.8 8.1×10−3 7.2×103

HR3-MZZF 3.7×10−9 2.0×10−5 1.0×10−7 1.4×10−4 2.6×10−3 4.6

VS F
3D FEM 3.9×10−5 1.8 3.3×10−4 8.8 5.0×10−3 7.6×103

HR3-MZZF 7.9×10−9 4.0×10−4 1.5×10−6 5.5×10−5 8.1×10−3 4.7

VS G
3D FEM 1.0×10−4 1.6×101 2.9×10−3 7.4 4.7×10−2 1.5×104

HR3-RZT 3.0×10−12 9.9×10−9 5.2×10−8 5.9×10−5 4.2×10−2 7.7

VS H
3D FEM 7.0×10−4 8.4 9.6×10−3 8.9 1.2×10−3 1.1×104

HR3-RZT 2.5×10−12 7.4×10−9 4.6×10−8 6.5×10−6 6.2×10−3 5.3

VS I
3D FEM 2.7×10−3 1.3×101 5.1×10−3 1.3×101 2.8×10−1 1.9×104

HR3-RZT 1.2×10−12 5.7×10−4 3.6×10−7 7.3×10−5 4.6×10−2 7.8

VS J
3D FEM 2.5×10−4 1.5×101 1.4×10−2 7.3 4.4×10−1 1.3×104

HR3-RZT 1.7×10−12 1.5×10−5 5.2×10−8 6.7×10−6 5.8×10−2 2.3
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For laminate VS G, the residual max |R̄x| of HR3-RZT is ten orders of magnitude less than

for the 3D FEM model. In general, the magnitudes of residuals R̄x and R̄z are least for the

symmetric composite and sandwich beams, and increase in magnitude for the non-symmetric

laminations VS E, VS F, VS I and VS J. Furthermore, the minimum and maximum values also

show that the range of the residuals is generally less for the HR model than for 3D FEM. Hence,

the variation of the residuals along the length of the beam is less for the present HR model.

In absolute terms, the maximum magnitude of the residual for the HR model is of order

101, whereas for 3D FEM, it is of order 104. Given that the residuals are normalised with

respect to q0, the maximum error in the 3D FEM solution is considerable when compared to

the applied loading magnitude. In particular, the magnitude of the residuals R̄x and R̄z of the

HR model is never greater than 10−4 along the length of the beams. This is not surprising as

the integral expressions of the equilibrium equations that are used to calculate residuals R̄x and

R̄z in Eqs. (6.7)-(6.8) are enforced explicitly in the HR functional via Lagrange multipliers. In

3D FEM, the equilibrium equations are not applied as constraints in the variational statement,

and this leads to larger magnitudes of the residuals R̄x and R̄z.

In the previous Section 6.3, it was shown qualitatively that the 3D FEM model violates the

transverse equilibrium equation τxz,x + σz,z = 0 at the top and bottom surfaces of laminates

VS F, VS G and VS J. The residual R̄tz represents the quantitative measurement of how accu-

rately this equilibrium condition is satisfied by the HR and 3D FEM models. The magnitudes

max |R̄tz| in Table 6.3 suggest that the maximum residual of the HR model is at least three

orders of magnitude smaller than the 3D FEM residual.

However, consider the axial plots of residual R̄tz for laminates VS G and VS J in Figures 6.27a

and 6.28a. These plots show that residual R̄tz for the 3D FEM model, increases considerably

towards the ends of the beam due to the singularity of the boundary condition at these locations.

Remote from the ends the magnitude of R̄tz converges to that of the HR model. Therefore,

Figures 6.27a and 6.28a suggest that the large differences in max |R̄tz| between 3D FEM and

the HR model are constrained to local regions towards the boundaries. At the same time, the

axial plots of the ratio between R̄tz of the HR model and the 3D FEM model for the same

laminates in Figures 6.27b and 6.28b, show that the HR residual R̄tz is always at least one order

of magnitude smaller than the 3D FEM residual. Finally, both Figures 6.27b and 6.28b show

that residuals R̄x and R̄z of the HR model are negligible compared to the 3D FEM model along

the entire beam length.

In summary, these quantitative findings show that the HR model leads to stress results

that obey Cauchy’s 3D equilibrium equations more accurately than 3D FEM. In effect, this

explains the qualitative observations in Section 6.3 regarding the errors in the 3D FEM model of

accurately predicting the boundary condition σ̄z,z = 0 at the surfaces. Based on these qualitative

and quantitative findings, it is concluded that the present higher-order HR formulation provides

more accurate stress results compared to the 3D FEM model for the laminates and load case

considered here.

Combined with the residual in Cauchy’s equilibrium equations, the total strain energy can

be used to assess the accuracy of the two models. Any structure under external loading, and

constrained by certain boundary conditions, deforms in such a manner as to minimise the total
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Figure 6.27: Laminate VS G: Spanwise distribution of the normalised residual of Cauchy’s
z-direction equilibrium equation at the top surface in (a), and spanwise distribu-
tions of the residual ratios of Cauchy’s x- and z-direction equilibrium equations
in (b), as calculated from the HR and 3D FEM models.
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Figure 6.28: Laminate VS J: Spanwise distribution of the normalised residual of Cauchy’s
z-direction equilibrium equation at the top surface in (a), and spanwise distribu-
tions of the residual ratios of Cauchy’s x- and z-direction equilibrium equations
in (b), as calculated from the HR and 3D FEM models.
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6.4. Comments on 3D equilibrium conditions and strain energy

Table 6.4: Total strain energy U in the model of the structure, and percentage contributions of
axial deformation (Uσx/U), transverse shear deformation (Uτxz/U) and transverse
normal deformation (Uσz/U).

Lam. Model Uσx/U (%) Uτxz/U (%) Uσz/U (%) U (J/m)

VS A
HR3-MZZF 45.3 54.3 0.37 0.142

3D FEM 44.6 55.1 0.37 0.142

VS B
HR3-MZZF 46.3 53.4 0.35 0.148

3D FEM 45.5 54.1 0.33 0.147

VS C
HR3-MZZF 58.5 41.1 0.40 0.215

3D FEM 57.4 42.2 0.44 0.214

VS D
HR3-MZZF 45.1 54.5 0.39 0.149

3D FEM 44.2 55.4 0.39 0.147

VS E
HR3-MZZF 50.7 48.9 0.37 0.162

3D FEM 50.0 49.6 0.37 0.161

VS F
HR3-MZZF 46.6 53.1 0.34 0.156

3D FEM 45.5 54.1 0.34 0.155

VS G
HR3-RZT 27.7 72.0 0.27 2573
3D FEM 26.4 73.4 0.19 2572

VS H
HR3-RZT 28.0 71.9 0.18 2478
3D FEM 28.3 71.6 0.18 2433

VS I
HR3-RZT 27.0 72.6 0.40 3174
3D FEM 26.1 73.6 0.24 3142

VS J
HR3-RZT 29.8 69.9 0.35 2180
3D FEM 28.8 71.0 0.18 2168

strain energy U . Thus, if the HR model more accurately obeys Cauchy’s equilibrium equations,

and at the same time corresponds to a lower strain energy configuration than 3D FEM, then

its solution must necessarily be a more accurate representation of the 3D stress field within the

structure.

Table 6.4 compares the total strain energy per unit width U of the HR and 3D FEM models

for all variables stiffness laminates VS A-VS J, and also shows the respective percentage energy

contributions of the axial stress Uσx , transverse shear stress Uτxz and transverse normal stress

Uσz potentials. These quantities are calculated as follows:

U =

∫ a

0

∫ t/2

−t/2

[
σ

(k)2

x

2Q̄(k)
+
τ

(k)2

xz

2G
(k)
xz

+
σ

(k)
z

2

(
R

(k)
33 σ

(k)
z +R

(k)
13 σ

(k)
x

)]
dzdx = Uσx + Uτxz + Uσz (6.10)

where σx, τxz and σz are derived from Eqs. (4.23), (4.40) and (4.41) for the HR model, respec-

tively, and are extracted from Abaqus using a Python script for the 3D FEM model.

Table 6.4 shows that the percentage contributions of three stress fields for the HR and

3D FEM models, are correlated to within 1.5% for all laminates considered. For composite

laminates VS A-VS F, the strain energy within the beam is almost equally shared between the

axial stress and the transverse shear stress. For the sandwich beams VS G-VS J, the effect of
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6.5. Localised stress gradients driven by tow steering

transverse shear deformations is increased due to the relatively high shear flexibility of the core,

and contributes to more than 70% of the strain energy within the structure. Furthermore, for

all laminates analysed, the energy contribution of the transverse normal stress field is less than

0.5% and negligible compared to the axial and transverse shear stress fields.

Finally, for all laminates, the internal strain energy of the 3D FEM model is less than the

strain energy of the HR model. For most laminates, the difference between the two models is

less than 1% but for the laminate VS H the strain energy of the HR model is 1.8% greater

than for 3D FEM. Thus, in general, we cannot conclude that the HR model leads to a lower

strain energy solution than 3D FEM, and therefore does not correspond to a lower energy

state. However, it is well-known that the displacement-based weak-form FEM overestimates

the stiffness matrix and results in the lowest possible strain energy solution [11]. Based on the

previous observation that the HR formulation predicts higher internal strain energy states than

the 3D FEM model; more accurately obeys Cauchy’s 3D equilibrium equations; and correlates

to within 1% of Pagano’s 3D elasticity solution [20], provides compelling evidence that the HR

formulation, combined with the strong form DQM, more accurately predicts the 3D stress fields

for the laminates considered here. This is especially noteworthy as the computational effort

in the HR3-RZT formulation is reduced by four orders of magnitude compared to 3D FEM;

217 degrees of freedom (5 moments and 2 Lagrange multipliers at 31 grid points) in HR3-RZT

compared to 1.16×106 degrees of freedom (6 unknowns for 95,880 elements, i.e. 193,600 nodes)

in 3D FEM.

6.5 Localised stress gradients driven by tow steering

This section investigates non-classical transverse shear stress profiles that for straight-fibre lam-

inates have previously only been observed at clamped boundaries [173,174]. The results in this

section show that stiffness variations along a beam can induce the same boundary layer effects

but remote from any singularities or boundary conditions. It is shown that tow-steering can

lead to non-intuitive stress gradients that may adversely affect the damage tolerance of these

laminates.

To study the effect in straight-fibre laminates, consider a square [0/90/0] laminate with in-

plane dimensions a = b and characteristic length to thickness ratio of a/t = 10, clamped along

all four edges and loaded by a uniform pressure on the top surface. The bending behaviour

of this laminate is readily investigated using the HR plate model derived in Chapter 7. The

example of a plate is used here as the four clamped conditions induce a particular boundary layer

with non-intuitive transverse shear stresses in the four corners of the straight-fibre laminate,

and this particular behaviour is not possible for 1D beams.

Figure 6.29 shows the through-thickness plots of the transverse shear stresses at a distance

of (x, y) = (0.066a, 0.066b) from one of the corners of the plate. The stress distributions of the

HR3-RZT and 3D FEM model are closely matched at this location. Conversely, Figure 6.30

shows the through-thickness plots of the transverse shear stresses at a corner of the plate, i.e.

at (x, y) = (0, 0). It is apparent that the transverse shear plots in the corner are considerably

different from the plots slightly away from the corner. The 3D FEM solution is not plotted for
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Figure 6.29: Through-thickness distribution of the normalised transverse shear stresses τxz
and τyz at location (0.066a, 0.066b, z).

the corner location in Figure 6.30 because the clamped edges create a singularity that prevents

convergence of the stresses to meaningful values.

Slightly away from the corner in Figure 6.29, we observe the classical result of single sign,

piecewise parabolic transverse shear stresses, i.e. the applied pressure loading on the top surface

is causing the cross-section to shear in one direction only. However, at the corner in Figure 6.30,

the HR3-RZT solution shows that both transverse shear stresses change sign through the thick-

ness, i.e. some parts of the cross-section are shearing in one direction, whereas other parts are

shearing in the opposite direction. This non-intuitive stress distribution arises from the strong

dual boundary condition of two coincident clamped edges at the corner point. Small move-

ments away from the corner, as shown in Figure 6.29, completely eliminate this phenomenon

suggesting that this is a boundary layer effect for straight-fibre laminates.

Similar plots are shown in the works by Vel and Batra [173] and Shah and Batra [174] but

these authors did not point out or study the peculiarity of these stress fields in further detail.

As is shown below, the same effects can be replicated in variable-stiffness beams at locations

considerably removed from any boundaries. Thus, boundary layers that occur in the vicinity of

strong 2D boundary conditions for straight-fibre laminates can be induced in 1D structures by

varying the material properties alone.

For example, consider a multilayered beam with characteristic length to thickness ratio

a/t = 20, comprised of Nl variable-stiffness composite layers and clamped at both ends xA = 0

and xB = a = 250 mm, and subjected to a uniformly distributed load equally divided between

the top and bottom surfaces P̂b = −P̂t = 50 kPa.

Table 6.5 summarises two balanced and symmetric, variable-stiffness layups VS X and VS

Y that are analysed using the HR3 model. The two laminates feature eight tow-steered plies

of equal thickness manufactured using the IM7 8552 carbon-fibre reinforced plastic previously

defined in Table 6.2. Laminate VS X features fibre variations of 90◦ within each layer, whereas
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Figure 6.30: Through-thickness distribution of the normalised transverse shear stresses τxz
and τyz at location (0, 0, z). Note the change of sign of the transverse shear
stresses through the thickness.

Table 6.5: Stacking sequences and material properties of two tow-steered laminates used to
investigate localised stress fields due to in-plane stiffness variations.

Laminate Layup tply (mm)

VS X [〈90|0〉/〈−90|0〉/〈45| − 45〉/〈−45|45〉]s 1.5625
VS Y [〈90|20〉/〈45| − 25〉/〈−90| − 20〉/〈−45|25〉]s 1.5625

the fibre variations for laminate VS Y are slightly more benign at 70◦ for each layer.

A 3D FEM model in Abaqus is implemented that features a 250 mm long (x-direction), 1000

mm wide (y-direction) and 12.5 mm thick (z-direction) plate that is meshed using a total

of 95,880 C3D8R elements with 799 elements in the x-direction, 120 elements in the z-direction,

i.e. 15 elements per ply, and a single element in the y-direction. The plane strain condition in

the y-direction is enforced by the high width-to-length aspect ratio, the use of a single element in

the y-direction and boundary conditions that prevent the shorter sides from expanding laterally.

Figure 6.31 plots the through-thickness profile of the normalised (see Eq. (6.4)) transverse

shear stress τ̄xz for laminates VS X and VS Y at the quarterspan (x = a/4) of the beam. The

plots show that the 3D FEM solution from Abaqus and the HR3 results are well correlated

throughout the entire thickness.

Most importantly, both plots show that the transverse shear stress is both negative and

positive throughout the thickness. For both laminate VS X and VS Y, the external surface

layers shear in one direction, whereas the internal layers shear in the opposite direction. Hence,

this behaviour is similar to results at the clamped corner point of a straight-fibre laminate shown

in Figure 6.30. In this case, the two coincident clamped edges induced strong localised boundary

layers in the transverse shear stress profiles. Remote from such singularities, the transverse shear

stress profiles in isotropic and straight-fibre composite beams and plates is either positive or
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Figure 6.31: Through-thickness distribution of the normalised transverse shear stress (at x =
a/4). Note the change of sign of the transverse shear stress through the thickness.

negative throughout the entire thickness. However, for the two tow-steered beams VS X and VS

Y, the transverse shearing reversal occurs at the quarterspan, i.e. significantly removed from

any localised boundary condition.

The physical reason of why this is possible in tow-steered beams is readily explained by

investigating the transverse shear stress equation of the HR model in the absence of surface

shear tractions, reproduced from Chapter 4 below,

τ (k)
xz =

d

dx

[{
−Q̄(k)g(k) +α(k)

}
sF
]
. (6.11)

In Eq. (6.11), the only quantities that can influence the layerwise sign of the transverse shear

stress are the ply stiffness Q̄(k) and integration constant α(k), where the latter is a function of the

ply stiffness terms Q̄(k) itself. All other terms s and F are equivalent single-layer quantities that

are the same for all plies. For any material that satisfies the second law of thermodynamics, the

definition Q̄(k) > 0 holds and as the value of Q̄(k) for each layer is fixed along the entire length

of a straight-fibre beam, the sign of the transverse shear stress is completely defined by the

stress resultants F along the beam length. However, for tow-steered laminates, the derivative
dQ̄(k)

dx
6= 0 and can be positive for some layers and negative for others. Hence, the sign of the

transverse shear stress can change sign based on the local rate of change of the material stiffness

Q̄(k).

The practicality of these non-intuitive transverse shear stress profiles is yet to be determined.

Perhaps, these localised stress fields can be used for actuation purposes in morphing structures

or for sensing of interlaminar damage sites. On the contrary, these transverse shear stress

profiles of opposite sign could be detrimental for the damage tolerance of tow-steered laminates.

The transverse shear force, i.e. the through-thickness integral of the transverse shear stress, is

fully defined by the external loading and boundary conditions, and hence is independent of the
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6.6. Full-field stress tailoring for delamination prevention

stacking sequence or material properties of the laminate. As a result, locally positive transverse

shear stresses must result in increased negative transverse shear stresses at other locations

throughout the cross-section and vice versa if the overall transverse shear force is to remain

constant.

As debonding of layers in laminated composites is driven by the magnitude of transverse

shear stresses, these locally accentuated levels of transverse shear stress could lead to prema-

ture delamination initiation. Current studies on the buckling and postbuckling optimisation

of tow-steered laminates in the literature rarely account for transverse shear stresses. If the

non-intuitive through-thickness stresses outlined in this section are detrimental to the damage

tolerance of tow-steered laminates, and these effects occur remote from boundaries and singu-

larities, which are traditionally seen as the areas of localised stress concentration, then current

design guidelines need to be reviewed to take account of these effects. Thus, further work into

the potential uses and effects of this particular non-classical effect are pertinent topics for future

research.

6.6 Full-field stress tailoring for delamination prevention

The aim of the following study is to use the variable fibre angle technology to tailor the through-

thickness stress distributions of the transverse shear and normal stresses. The motivation behind

this goal is to reach a compromise between maintaining high overall bending stiffness and

reducing local interfacial stress concentrations.

An often cited metric for predicting the onset of delamination in layered composites is the

quadratic failure criterion of Camanho et al. [175]

f =

(
〈σzz〉
Ň

)2

+

(
τxz

Š

)2

+

(
τyz

Ť

)2

(6.12)

where Ň is the interlaminar tensile strength, and Š and Ť are the interlaminar shear strengths.

Delamination initiation is assumed to occur when f ≥ 1. Macaulay brackets 〈〉1 are used because

compressive transverse normal stresses do not contribute to the initiation of delaminations. In

the beam problem considered here, τyz = 0, such that delamination initiation is driven by

σzz and τxz at the interface between two plies with different material properties. In the HR

formulation, the interfacial shear and normal stresses are calculated using Eqs. (4.40) and (4.41).

Consider the problem of a simply supported, four layer cross-ply beam in bending, loaded

by a uniform pressure on the top surface. Depending on the arrangement of the four layers, the

transverse shear stress profile changes considerably. Figure 6.32 compares the transverse shear

stress profile at the support x = 0 through the thickness of a [0/90]s and a [90/0]s laminate. For

both laminates, the maximum shear stress occurs at the midplane and the transverse shear stress

vanishes at both surfaces due to the absence of external shear tractions. Classical beam theory

states that the transverse shear force, i.e. the integral of the transverse shear stress through

the thickness, is independent of the layup and only depends on the loading condition. Based

on these two insights, it is apparent that to distribute stresses most evenly, the shear stress

1〈x〉 = 0 for x ≤ 0 and 〈x〉 = x for x > 0
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Figure 6.32: Through-thickness distribution of normalised transverse shear stress τ̄xz at x = 0
for two cross-ply laminates. Profiles calculated using Pagano’s 3D elasticity
solution [20].

should increase as rapidly as possible away from the outer surfaces and then remain constant

for the rest of the cross-section (see Figure 6.32a). In the ideal case the entire cross-section is

sheared by the same amount, thereby spreading load equally and minimising the shear stress

amplitude. Alternatively, if delaminations are to be tolerated, and their location constrained

to the midplane where sublaminate buckling in compression is least likely, a transverse shear

stress profile as shown in Figure 6.32b is preferable.

Due to the greater axial and transverse shear rigidity of the 0◦ layers, the former scenario

can be realised by placing the stiffer 0◦ on the outside and using the less stiff 90◦ layers as a

core. In the opposite case, the transverse shear stress remains close to zero in the outer 90◦

layers causing a local stress concentration in the central 0◦ layers with an overall greater shear

stress magnitude.

Even for such a simple scenario the two cases present a non-trivial trade-off. The [0/90]s lam-

inate maximises bending stiffness and reduces the maximum shear stress magnitude throughout

the thickness by placing the stiffer 0◦ towards the surfaces. Conversely, the [90/0]s laminate

significantly reduces the shear stress at the interface between the 0◦ and 90◦ layers, which is

a critical factor in delamination initiation. Thus, a compromise needs to be reached between

minimising bending deflection and reducing the chance of intraply transverse cracking.

This trade-off ultimately depends on the structural requirements and material strengths

being considered, and is not only restricted to this illustrative case of a cross-ply laminate. To

an extent, a similar phenomenon occurs for a quasi-isotropic laminate, whereby a [±45/90/0]s

stacking sequence is comparable to the [90/0]s laminate, whereas a [0/±45/90] stacking sequence

is the analogue to the [0/90]s laminate.

An optimisation study was conducted to ascertain if beams manufactured using variable-

stiffness composite plies could:
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1. Reduce the likelihood of delaminations compared to an optimised straight-fibre, quasi-

isotropic beam, i.e. reduce the maximum value of the initiation criterion f in Eq. (6.12)

at the interfaces of layers with different material properties.

2. Find a compromise between maximising overall bending rigidity and minimising the like-

lihood of delaminations.

For both opimisation studies above, a 250 mm long and 16 mm thick beam with either

simply supported (SS) or clamped (CC) boundary conditions was analysed, i.e. a total of four

optimisation studies 1-CC, 1-SS, 2-SS and 2-CC. In all cases, the beam is loaded by a uniform

distributed load of unit magnitude on the top surface only. The material properties are those

of IM7-8552 defined in Table 6.2, and the interlaminar strengths are Ň = 99 MPa and Š = 113

MPa. Initially, a 16-ply quasi-isotropic, balanced and symmetric baseline design comprised

of straight-fibre ±45◦, 0◦ and 90◦ plies is sought for each of the four optimisation cases. For

example, in a [45,−45, 0, 90, 0, 90,−45, 45]s stacking sequence, each fibre angle represents a stack

of four 0.25mm plies within which delaminations cannot occur. Thus, the goal is to rearrange

the ply blocks such as to minimise the appropriate fitness function.

For the variable-stiffness designs, the laminate is constrained to the balanced and symmet-

ric form [±〈T (1)
0 |T

(1)
1 〉, · · · ,±〈T

(8)
0 |T

(8)
1 〉]s. There are 32 blocks of variable-stiffness layers each

comprised of two 0.25 mm IM7-8552 plies, such that each ± pair of variable-stiffness plies is

equivalent to a stack of four straight-fibre plies in the quasi-isotropic baseline designs.

Initial numerical studies showed that for the type of composite laminate investigated, ZZ

deformations have negligible effects on the global structural behaviour and local boundary layers

towards the clamped edges. The benign orthotropy ratio G13/G23 = 1.25 of IM7-8552, and the

large number of unique plies through the thickness, limit the effect of ZZ deformations. Thus,

the implemented optimisation problem is based on the HR3 model formulation, i.e. a third-order

expansion without a ZZ term.

For the variable-stiffness laminates, the two optimisation problems are formulated as follows:

1) Minimise: max {f(v)}

2) Minimise: max {f(v)} ·max {w0(v)}

Variables: v :
[
T

(1)
0 . . . T

(8)
0 T

(1)
1 . . . T

(8)
1

]
Subject to: 0◦ ≤ T (k)

s ≤ 90◦ (s = 0, 1 and k = 1 . . . 8)

(6.13)

where w0 is the bending deflection and f the delamination initiation factor defined in Eq. (6.12).

The delamination initiation factor f is calculated at the top and bottom of each ply, i.e. at the

layer interfaces, and at all DQM grid points Xi throughout the grid.

Note that the second optimisation study is a multi-objective optimisation, and therefore a

Pareto front of optimised designs exist for different combinations of f(v) and w0(v). Thus,

designs with varying degrees of importance assigned to the two objectives f and w0 can be

found. As the focus of this work is on the underlying higher-order model, a more straightforward

option was chosen here. Hence, an optimised solution that gives equal weight to both objectives,

displacement and fracture, is sought here, which represent a simple compromise between the
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Table 6.6: Optimised straight-fibre and variable stiffness laminates with associated value of the
fitness function. The percentage change indicates the reduction in fitness function
magnitude of the variable stiffness designs compared to the straight-fibre designs.

Optimisation Layup Fit. Function Change

1 - SS
[02/45/− 45/902/− 45/45]s 7.10× 10−3 -

[02/± 〈90|71〉/± 〈90|84〉/904/ 6.20× 10−3 -12.6%±〈81|89〉/± 〈0|83〉/± 〈0|77〉]s

1 - CC
[0/45/90/− 45/90/45/− 45/0]s 5.91× 10−3 -

[±〈70|10〉/± 〈2|73〉/± 〈10|74〉/± 〈34|66〉/
5.47× 10−3 -7.4%±〈82|85〉/± 〈41|48〉/± 〈4|65〉/± 〈0|17〉]s

2 - SS
[02/45/− 45/45/90/90/− 45]s 1.05× 10−5 -

[04/± 〈0|62〉/± 〈0|72〉/± 〈0|76〉3/± 〈0|71〉]s 7.82× 10−6 -25.3%

2 - CC
[0/− 45/0/90/45/− 45/90/45]s 2.93× 10−6 -
[02/± 〈0|3〉/± 〈0|35〉/± 〈0|26〉/

2.26× 10−6 -22.8%±〈0|9〉/± 〈0|3〉/04]s

two objectives.

The optimisation problem is solved using a genetic algorithm (GA) in the commercial soft-

ware package Matlab. The crossover probability is chosen to be 0.8 and the children of future

generations are created using a weighted average of the parents. The mutation function is a

Matlab adaptive-feasible algorithm that creates random changes in the population individuals

with the direction and step length adaptive to the prior successful or unsuccessful generation.

Due to the large number of design variables and the non-convexity of the optimisation prob-

lem, the convergence of the GA is relatively slow and a global minimum is not guaranteed.

To improve the convergence rate, a hybrid optimisation scheme is implemented, whereby the

GA is used to find the region near an optimum point after only a small number of generations,

typically less than 20, and a pattern-search algorithm is then used for a faster and more efficient

local search. To prevent entrapment in local minima, a variety of random and specific initial

seed populations are tested, with the range of individuals in the initial population set to include

the whole design space T (k)
s ∈ [0◦, 90◦], and the population size set to 15-20 times the number

of design variables.

Table 6.6 summarises the optimised straight-fibre and variable-stiffness laminates found

using the GA for the four optimisation studies. In all cases, the variable-stiffness design improves

upon the optimal straight-fibre design.

The structural mechanism behind the improvements is readily explained by example of

case 2-SS. Classical beam theory states that the maximum transverse shear force must occur at

the supports for a simply supported beam loaded by a uniformly distributed load. Ideally, the

stiffness of the beam can be reduced over the supports as the transverse deflection is constrained

at these points. To reduce the likelihood of delaminations in this area, the magnitude of the

maximum transverse shear stress is minimised using the mechanism previously described in

Figure 6.32a, i.e. stiffer layers towards the surfaces with a softer core. In the optimal design

for case 2-SS, the local layup above the supports is [04/± 62/± 72/± 763/± 71]s which agrees
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Figure 6.33: Case 2 - SS: Comparison of normalised bending deflection w̄ and through-
thickness profile of transverse shear stress τ̄xz at the support x = 0 for quasi-
isotropic and variable-stiffness optimal designs.

with the above qualitative explanation. Furthermore, the layup at the centre of the beam, i.e.

the point of maximum bending deflection, is [032] which gives the maximum possible bending

stiffness.

Compared to the quasi-isotropic design, variable-stiffness laminates therefore have the capa-

bility of increasing the bending stiffness towards unsupported areas, and optimising the layup

for distributing transverse stresses at supported locations where stress concentrations are more

likely. Overall, this results in decreased bending deflection, a reduction in the peak transverse

shear stress and more distributed transverse loading, as shown in Figure 6.33. This figure also

shows that the variable-stiffness design reduces the peak bending displacement more than the

peak transverse shear stress. This explains why the fitness function in Table 6.6 is improved

more for case 2 (bending and delamination) than for case 1 (delamination only).

A similar explanation is applicable for the clamped optimisation case 2-CC. The optimised

design for case 2-CC in Table 6.6 shows that the fibre orientation at the midspan of the beam is

[032] to minimise the bending deflection, and varies linearly to [02/±3/±35/±26/±9/±3/04]s

over the supports. Compared to the optimised design for case 2-SS, the magnitude of stiffness

variation across the beam is reduced, such that the bending stiffness is relatively high along

the whole beam. Indeed, Figure 6.34 shows that the improvements in the fitness function with

respect to the straight-fibre design are mostly due to reductions in the bending deformation w0

than reductions in the peak transverse shear stress over the supports.

However, Figure 6.34b does show that the transverse shear stress is more evenly distributed

throughout the cross-section for the variable-stiffness laminate than the straight-fibre laminate.

The plot shows that the clamped edge introduces a non-intuitive transverse shear stress profile

at the supports. The pronounced through-thickness variation makes it harder to evenly spread

the load throughout the cross-section. This mechanism also explains why the improvements
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Figure 6.34: Case 2 - CC: Comparison of normalised bending deflection w̄ and through-
thickness profile of transverse shear stress τ̄xz at the support x = 0 for quasi-
isotropic and variable-stiffness optimal designs.

in the fitness function for case 1-SS are better than for case 1-CC in Table 6.34, i.e. for the

cases where only the delamination failure criterion f is minimised. Namely, the higher-order

variation of transverse shear stress at the clamped supports makes it harder to redistribute the

transverse shear stress for delamination prevention purposes.

Finally, the transverse shear stress plots in Figures 6.33b and 6.34b show the model results

for both HR3 and HR3-MZZF, i.e. with and without inclusion of a ZZ function, respectively.

These plots show no difference between the two models, such that ZZ effects can safely be

ignored. These results support the initial assumption of basing this optimisation study on the

HR3 model.

6.7 Conclusions

This chapter extended the benchmarking exercise of a third-order zig-zag implementation of

the HR model derived in Chapter 4 to variable-stiffness beams. The accuracy of the model

was validated against 3D FEM solutions and the good correlation of all three stress fields (σx,

τxz and σz) with the benchmark solutions demonstrate the accuracy of the model for layered

structures with material properties that may vary continuously in-plane and discretely through

the thickness. The HR model was also used to analyse transverse boundary layers towards

external surfaces that are not captured rigorously by 3D FEM, and to find a compromise

between increased bending stiffness and reduced chance of delaminations by full-field stress

tailoring.

The results for the variable-stiffness laminates in this chapter, revealed numerical instabilities

in the implementation of the HR-RZT formulation within the DQM. The dependence of the

RZT ZZ function on transverse shear rigidities means that the ZZ effect, as predicted by RZT,
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can be finite in some areas of the beam and vanish in others. Local areas with negligible ZZ

effect lead to numerical instabilities in the model due to vanishing degrees of freedom or due

to local singularities in the axial variation of laminate compliance terms. As DQM computes

derivatives based on all functional values within the domain, local singularities cause significant

noise in the numerical calculation of derivatives, and in turn, in the transverse shear and normal

correction factors that underpin the model. These effects are not observed for MZZF as this

ZZ function does not vary with axial location for variable-stiffness laminates, and thus the

HR3-MZZF model performs robustly for all laminates considered.

Despite these numerical instabilities in the HR3-RZT model for certain laminates, the results

in Section 6.3 demonstrate that the HR3, HR3-MZZF, HR3-RZT and 3D FEM results are

well-correlated for the comprehensive range of variable-stiffness composite and sandwich beams

modelled herein. These laminates represent a challenging test case for any ESLT as local

material properties change both in the axial and transverse directions, and layer properties can

vary by orders of magnitude. In fact, Section 6.4 revealed that the HR models more accurately

predict transverse boundary layers towards external surfaces, i.e. Cauchy’s 3D equilibrium

equations are obeyed more closely on a local layer and global laminate level, than in the 3D

FEM implementation in Abaqus. Section 6.5 then showed that non-intuitive localised stress

fields in straight-fibre laminates that are induced towards clamped supports can occur in tow-

steered laminates remote from any boundaries or singularities.

Finally, the HR model was used to develop the new concept of tailoring the full 3D stress

field throughout composite laminates. Transverse cracking between layers is a problematic

failure criterion for commonly used structures as this form of damage is often invisibly hidden

within the laminate but can significantly reduce the load-carrying capacity. As initiation of

delaminations is driven by interlaminar transverse shear and transverse normal stresses [175],

and as these stress fields are accurately predicted in the HR formulation, the present model was

used as the basis for a computationally efficient optimisation study that minimises transverse

stress concentrations at layer interfaces while maintaining high bending rigidity. The results

in Section 6.6 show that variable-stiffness laminates can lead to a better compromise for these

objectives than quasi-isotropic straight-fibre laminates by facilitating smooth layup transitions

between the central portion of the beam, where high bending stiffness is required, and portions

of the beam subject to local stress concentrations.
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Chapter 7

Hellinger-Reissner Model for Heterogeneous

Laminated Plates

This chapter extends the higher-order model for laminated 1D beams presented in Chapter 4

to 2D flat plates. The classical equivalent single-layer membrane and bending equilibrium

equations are enforced within the PMCE via Lagrange multipliers, resulting in a contracted HR

functional that is used to derive a set of governing equations1 from higher-order displacement

and stress fields that inherently guarantee interlaminar and surface traction equilibrium. Even

though local layerwise properties are taken into account via a ZZ function, all variables of

the model are independent of the number of layers. The governing equations are derived in a

generalised framework, such that the order of the model is readily increased when implemented

in a computer code. By increasing the order of the model and including or disregarding the local

ZZ fidelity, the model is easily tailored to plate-like structures ranging from thin engineering

laminates to highly heterogeneous thick laminates comprised of straight-fibre or tow-steered

reinforced plastics, foam, honeycomb and other compliant layers.

7.1 Higher-order zig-zag in-plane stress fields

Consider a multilayered plate of uniform thickness t comprised of Nl perfectly bonded laminae

with individual thicknesses t(k) as represented in Figure 7.1. The initial configuration of the

plate is referenced in orthogonal Cartesian coordinates (x, y, z) with x and y defining the two

in-plane dimensions and z ∈ [−t/2, t/2] defining the thickness coordinate. In the following, this

multilayered structure is condensed onto an equivalent single layer Ω coincident with the (x, y)-

plane by integrating the structural properties and 3D governing equations in the direction of

the smallest dimension z. The plate is bounded by two boundary surfaces S1 and S2 on which

the displacement and traction boundary conditions are specified, respectively, and where the

complete bounding surface S = S1 ∪S2, hence S includes the top and bottom surfaces, and the

circumferential boundary surface. The intersection of the bounding surface S and the reference

surface Ω describes the perimeter curve Γ of the reference surface. This perimeter is split into two

disjoint curves C1 and C2 on which displacement and stress resultant boundary conditions are

prescribed, respectively. The plate is assumed to undergo static isothermal deformations under

a specific set of externally applied shear and normal tractions
(
T̂bx, T̂by, P̂b

)
and

(
T̂tx, T̂ty, P̂t

)
on the bottom and top surfaces of the 3D body, respectively. Note that henceforth a superposed

“hat”ˆrefers to a prescribed quantity, and the list a = (a1, a2, a3, . . . ) refers to a column vector.

The in-plane displacement fields ux(x, y, z) and uy(x, y, z) are expanded as generalised ex-

pansions of z in terms of global displacement variables uin(x, y) and local layerwise ZZ variables

1Governing field equations and boundary conditions.
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Figure 7.1: A 3D multilayered plate condensed onto an equivalent single layer. The as-
sumed through-thickness displacement field accounts for layerwise ZZ disconti-
nuities which are disregarded in classical theories.

uφi (x, y) for i = x, y and n = 0, 1, . . . , Noi , where Noi is the highest-order expansion term in

the ith direction. As most practical engineering laminates maintain a high degree of transverse

normal rigidity, the present formulation ignores the occurrence of thickness stretch. Hence,

uz(x, y) is independent of z. Therefore, only Kirchhoff’s hypotheses regarding plane sections re-

maining plane and normals remaining perpendicular to the midplane are relaxed. Nevertheless,

thickness stretch could readily be incorporated within the present formulation by assuming a

higher-order global/local expansion for uz.

The displacement at any point (x, y, z) within the plate domain is assumed to be

u(k)
x (x, y, z) = ux0(x, y) + zux1(x, y) + z2ux2(x, y) + z3ux3(x, y) + · · ·+ φ(k)

x (x, y, z)uφx(x, y)

(7.1a)

u(k)
y (x, y, z) = uy0(x, y) + zuy1(x, y) + z2uy2(x, y) + z3uy3(x, y) + · · ·+ φ(k)

y (x, y, z)uφy (x, y)

(7.1b)

uz(x, y) = w0 (7.1c)

where ui0 are the reference surface in-plane displacements, ui1 are the rotations of the plate

cross-section, ui2 , ui3 , . . . are higher-order stretching and rotation terms, uφi are the ZZ rotations

and φ
(k)
i are the pertinent ZZ functions where superscript (k) refers to ply k.

Most ZZ functions in the literature can be written in the linear form

φ
(k)
i (x, y, z) = m

(k)
i (x, y) · z + c

(k)
i (x, y) for i = x, y (7.2)

where m
(k)
i and c

(k)
i take different layerwise values depending on the particular choice of the

ZZ function. Also note that for advanced composites with curvilinear fibre paths, the RZT

ZZ function is dependent on both in-plane (x, y)- and through-thickness z-coordinates, whereas

MZZF is independent of (x, y). The RZT ZZ function φ
(k)
RZT in two dimensions, introduced by
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Tessler et al. [78], previously discussed for 1D beam models in Chapter 4, is defined by

φ
(1)
iRZT

(x, y, z) =

(
z +

t

2

)(
Gi

G
(1)
iz

− 1

)

φ
(k)
iRZT

(x, y, z) =

(
z +

t

2

)(
Gi

G
(k)
iz

− 1

)
+

k∑
j=2

t(j−1)

(
Gi

G
(j−1)
iz

− Gi

G
(k)
iz

)


for i = x, y (7.3)

and Gi(x, y) =

[
1

t

Nl∑
k=1

t(k)

G
(k)
iz (x, y)

]−1

.

For variable-stiffness composites, the RZT ZZ function is not only a layerwise quantity but also

varies with the in-plane coordinates (x, y) as the transverse shear moduli G
(k)
iz (x, y) can change

from point to point over surface Ω.

MZZF is invariant of transverse material properties and therefore only varies with location

(x, y) when the thickness of the plate changes. In the case of a constant thickness plate, MZZF

is purely a layerwise function given by

φ
(k)
iMZZF

(z) = (−1)k
2

t(k)

(
z − z(k)

m

)
for i = x, y (7.4)

where z(k)
m is the midplane coordinate of layer k. Note that for a constant thickness plate

φ(k)
xMZZF

= φ(k)
yMZZF

.

To facilitate the concise derivation of the governing equations, the displacement field Eq. (7.1)

is written in condensed matrix form as follows:

U (k)
xy =

{
u(k)
x

u(k)
y

}
=
[
I2 Z2 Z2

2 . . .
]

Ug0
Ug1
Ug2
...

+

[
φ(k)
x 0

0 φ(k)
y

]{
uφx

uφy

}
(7.5)

where the matrices and vectors in Eq. (7.5) are given by

I2 =

[
1 0

0 1

]
, Z2 =

[
z 0

0 z

]
, Z2

2 =

[
z2 0

0 z2

]
, . . . (7.6)

Ug0 =
[
ux0 uy0

]>
, Ug1 =

[
ux1 uy1

]>
, Ug2 =

[
ux2 uy2

]>
, . . . (7.7)

with superscript g henceforth defined to refer to global quantities and > denoting the matrix

transpose. By defining

fgu =
[
I2 Z2 Z2

2 . . .
]

and f lu =

[
φ(k)
x 0

0 φ(k)
y

]
, (7.8)

Ug =
[
Ug0 Ug1 Ug2 . . .

]>
and U l =

[
uφx uφy

]>
(7.9)
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where superscript l is henceforth defined to refer to local ZZ quantities, Eq. (7.5) now reads

U (k)
xy = fguUg + f luU l =

[
fgu f lu

]{Ug
U l

}
= f (k)

u U (7.10)

The in-plane strains ε in Voigt-Kelvin vector notation are now derived from the kinematic

relations,

ε =


εx

εy

εxy

 =



∂ux
∂x
∂uy
∂y

∂ux
∂y

+
∂uy
∂x


=


∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x


{
ux

uy

}
= DUxy (7.11)

where a new differential operator matrix D has been defined. Substituting the expression for

Uxy from Eq. (7.10) into the kinematic relations Eq. (7.11) gives

ε(k) =
[
I3 Z3 Z2

3 . . .
]

D 0 0 . . .

0 D 0 . . .

0 0 D . . .
...

...
...

. . .



Ug0
Ug1
Ug2
...

+

φ
(k)
x 0 0 0

0 φ(k)
y 0 0

0 0 φ(k)
x φ(k)

y




∂

∂x
0

0
∂

∂y
∂

∂y
0

0
∂

∂x


{
uφx

uφy

}
+




∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x


[
φ(k)
x 0

0 φ(k)
y

]
{
uφx

uφy

}
(7.12)

where I3, Z3, Z2
3 etc. are 3x3 versions of the 2x2 matrices defined in Eq. (7.6), and the

differential operator matrix in the third term of Eq. (7.12) is only applied on the ZZ function

matrix within the parentheses. Note that this particular term in parentheses vanishes when

MZZF is used. By defining

fgε =
[
I3 Z3 Z2

3 . . .
]

and f lε =

φ
(k)
x 0 0 0

0 φ(k)
y 0 0

0 0 φ(k)
x φ(k)

y

 , (7.13)

Dg =


D 0 0 . . .

0 D 0 . . .

0 0 D . . .
...

...
...

. . .

 and Dl =



∂

∂x
0

0
∂

∂y
∂

∂y
0

0
∂

∂x


(7.14)

Eq. (7.12) is simplified to

ε(k) = fgε (DgUg) + f lε

(
DlU l

)
+
(
Df lu

)
U l. (7.15)
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Finally, by defining the global and local strain fields εg and εl, respectively,

εg = DgUg and εl = DlU l (7.16)

the strain can simply be expressed as

ε(k) =
[
fgε f lε Df lu

]
εg

εl

U l

 = f (k)
ε E . (7.17)

As a result, the in-plane strains are now defined as a product of a through-thickness function

f (k)
ε and unknown field variables E . Note that when MZZF is used Df lu = 0 and therefore the

variables U l in E are eliminated.

The in-plane stresses σ written in Voigt-Kelvin vector notation are now calculated from the

strains using the reduced stiffness matrix Q̄ for plane stress in z. Hence,

σ(k) =


σx

σy

σxy


(k)

=

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66


(k)

εx

εy

εxy


(k)

= Q̄
(k)
ε(k) = Q̄

(k)
f (k)
ε E . (7.18)

The stress resultants F are defined as the through-thickness integrals of the in-plane stresses

σ(k) multiplied by the assumed strain field function f (k)
ε . As the in-plane stress dyad σ =

σij , i, j = x, y has been written as a vector in Voigt-Kelvin notation, i.e. σ(k) = (σx, σy, σxy),

F is a collection of stress resultants written in Voigt-Kelvin notation as well. Thus,

F =

∫ t/2

−t/2
f (k)>

ε σ(k)dz =

∫ t/2

−t/2
f (k)>

ε Q̄
(k)
f (k)
ε dz · E = S · E (7.19)

where the first six terms of the column vector F = (Nx, Ny, Nxy,Mx,My,Mxy, . . . ) are the

classical membrane forces and bending moments N = (Nx, Ny, Nxy) and M = (Mx,My,Mxy),

and the following terms in F are higher-order moments.

In general, the orders of expansion in the x- and y-directions are chosen to be the same,

such that Nox = Noy = No. In this case, the length O of the stress resultant vector F is given

by:

• Global expansion up to zNo , no ZZ variables: O = 3 (No + 1)

• Global expansion up to zNo , MZZF: O = 3 (No + 1) + 3

• Global expansion up to zNo , RZT: O = 3 (No + 1) + 6. Note, O = 3 (No + 1) + 4 for

straight-fibre laminates.

Thus, a model based on RZT can lead up to three more variables in F than a model based on

MZZF. In the general case of RZT φ(k)
x 6= φ(k)

y , and therefore the ZZ twisting moments

Mφ
xy =

∫ t/2

−t/2
φ(k)
x σ(k)

xy dz 6= Mφ
yx =

∫ t/2

−t/2
φ(k)
y σ(k)

xy dz, (7.20)

161



7.2. Derivation of transverse shear stress fields

whereas for MZZF Mφ
xy = Mφ

yx. Second, in the general case of varying material properties over

the planform, e.g. for tow-steered laminates, the RZT coefficient matrix Df lu 6= 0, which leads

to two extra moments associated with the derivatives of the ZZ function. Hence,

M∂φ
x =

∫ t/2

−t/2

(
∂φ

(k)
x

∂x
σx +

∂φ
(k)
x

∂y
σxy

)
dz and M∂φ

y =

∫ t/2

−t/2

(
∂φ

(k)
y

∂y
σy +

∂φ
(k)
y

∂x
σxy

)
dz

(7.21)

and therefore, combined with the fact that Mφ
xy 6= Mφ

yx, RZT defines three more stress resultants

than MZZF.

Finally, matrix S in Eq. (7.19) is the higher-order ABD stiffness matrix of dimensions O×O
defined by

S =

∫ t/2

−t/2
f (k)>

ε Q̄
(k)
f (k)
ε dz (7.22)

which can be inverted to express the unknown strain field E in Eq. (7.19) in terms of the stress

resultants F . Hence,

E = S−1F = sF where s = S−1. (7.23)

Thus, we have derived a general expression for the layerwise in-plane stresses σ(k) given by

σ(k) = Q̄
(k)
f (k)
ε sF (7.24)

in terms of layerwise constitutive matrices Q̄
(k)

, the higher-order compliance matrix s, through-

thickness shape functions f (k)
ε and the stress resultants F , where the latter are the only func-

tional unknowns. Note, the advantage of expressing the in-plane stresses in terms of stress

resultants rather than displacements, is that the stresses are now functions of the unknown

variables themselves rather than their derivatives, and this helps to reduce the order of the

derived differential equations. In general, lower-order differential equations can be solved with

less numerical discretisation error.

7.2 Derivation of transverse shear stress fields

An expression for the transverse shear stresses is found by integrating the axial stresses of

Eq. (7.24) in Cauchy’s in-plane equilibrium equations in the absence of body forces,

∂σ
(k)
xz

∂z
= −∂σ

(k)
x

∂x
− ∂σ

(k)
xy

∂y

∂σ
(k)
yz

∂z
= −∂σ

(k)
xy

∂x
− ∂σ

(k)
y

∂y

⇒
∂τ (k)

∂z
=

∂

∂z

{
σxz

σyz

}(k)

= −


∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x



σx

σy

σxy


(k)

∂τ (k)

∂z
= −D>σ(k) = −D>

[
Q̄

(k)
f (k)
ε sF

]
. (7.25)

Note, the differential operator matrix D> is applied to all terms within the square brackets as

both the material dependent quantities Q̄
(k)

, f (k)
ε and s, as well as the stress resultants F can

vary over the domain Ω of a plate with curvilinear fibres. The only term in Eq. (7.25) that is

a function of z is f (k)
ε and therefore only this term is integrated to derive the transverse shear
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7.2. Derivation of transverse shear stress fields

stresses. Hence,

τ (k) = −D>
[
Q̄

(k)
(∫

f (k)
ε (z)dz

)
sF
]

= −D>
[
Q̄

(k)
g(k)(z)sF

]
+ a(k) (7.26)

where g(k)(z) captures the variation of τ (k) through the thickness of each ply k and is derived

by simple integration of the local and global polynomial shape functions.

The Nl layerwise constants a(k) are found by enforcing the Nl − 1 interfacial continu-

ity conditions τ (k)(zk−1) = τ (k−1)(zk−1) for k = 2, . . . , Nl, and one of the prescribed sur-

face tractions, i.e. either the bottom surface τ (1)(z0) = T̂b =
[
T̂bx T̂by

]>
or the top surface

τ (Nl)(zNl) = T̂t =
[
T̂tx T̂ty

]>
tractions. Here, we choose to enforce the bottom surface trac-

tions, such that the layerwise constants are found to be

a(k) =

k∑
i=1

D>
[{
Q̄

(i)
g(i)(zi−1)− Q̄(i−1)

g(i−1)(zi−1)
}
sF
]

+ T̂b = D>
[
α(k)sF

]
+ T̂b (7.27)

where by definition Q̄
0

= 0 and the variable

α(k) =
k∑
i=1

{
Q̄

(i)
g(i)(zi−1)− Q̄(i−1)

g(i−1)(zi−1)
}

(7.28)

has been introduced. Additional physical insight into the layerwise integration constants α(k)

can be gleaned when considering that the higher-order ABD matrix defined in Eq. (7.22) is

equal to the through-thickness integral of layerwise constitutive matrices Q̄
(k)

multiplied by

shape functions f (k)
ε . As g(k) is equal to the indefinite integral of f (k)

ε , the α(k) terms can be

interpreted as the partial higher-order ABD matrices up to the kth layer.

The final expression for τ (k) is established by substituting the layerwise integration constants

of Eq. (7.27) back into Eq. (7.26). Thus,

τ (k) = D>
[(
−Q̄(k)

g(k)(z) +α(k)
)
sF
]

+ T̂b. (7.29)

In the derivation of Eq. (7.27), the surface traction on the top surface is not enforced

explicitly. As the proof below shows, this condition is automatically satisfied if equilibrium

of the axial stress field Eq. (7.24) and transverse shear stress Eq. (7.29) is enforced. As we

are dealing with an equivalent single layer, Cauchy’s two in-plane equilibrium equations in the

absence of body forces are integrated in the thickness z-direction to give

∫ t/2

−t/2

(
D>σ(k) +

∂τ (k)

∂z

)
dz = D>N + τ (Nl)(zNl)− τ

(1)(z0) = 0 (7.30)

where the column vector N = (Nx, Ny, Nxy) represents the membrane stress resultants. An

expression for D>N is easily derived by applying the differential operator matrix D> to the
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7.2. Derivation of transverse shear stress fields

expression for σ(k) in Eq. (7.24) and then integrating in the z-direction. Hence,

D>N =

∫ t/2

−t/2
D>σ(k)dz =

Nl∑
k=1

D>
[{
Q̄

(k)
g(k)(zk)− Q̄

(k)
g(k)(zk−1)

}
sF
]
. (7.31)

Now, the only undefined quantity in Eq. (7.30) is τ (Nl)(zNl) and an expression for this is sought

using the expression for τ (k) in Eq. (7.29),

τ (Nl)(zNl) = D>
[{
−Q̄(Nl)g(Nl)(zNl) +α(Nl)

}
sF
]

+ T̂b

= −
Nl∑
k=1

D>
[{
Q̄

(k)
g(k)(zk)− Q̄

(k)
g(k)(zk−1)

}
sF
]

+ T̂b.

Substituting Eq. (7.31) into the above expression we have

τ (Nl)(zNl) = −D>N + T̂b (7.32)

and substituting Eq. (7.32) back into Cauchy’s equilibrium Eq. (7.30) gives

D>N +
(
−D>N + T̂b

)
− τ (1)(z0) = 0. (7.33)

Hence, as τ (1)(z0) = T̂b the expression in Eq. (7.33) is satisfied. This is the first important

characteristic of the higher-order model presented herein; as long as Cauchy’s in-plane equilib-

rium equations Eq. (7.30) are satisfied when deriving the governing equations from a variational

statement, equilibrium of the interfacial and surface shear tractions is automatically guaranteed

a priori using the stress assumptions in Eqs. (7.24) and (7.29).

Finally, the layerwise coefficients in the expression for τ (k) in Eq. (7.29), namely −Q̄(k)
g(k) +

α(k) are conveniently combined into a single layerwise vector c(k)(z), such that

τ (k) = D>
[
c(k)sF

]
+ T̂b. (7.34)

To shed some further insight into the above equation of the transverse shear stresses, the term

R(k) = c(k)s is defined and the differential product rule is applied to expand the term

D>
(
c(k)sF

)
= D>

(
R(k)F

)
=
(
D>R(k)

)
F + IxR

(k)∂F
∂x

+ IyR
(k)∂F

∂y

=
(
D>R(k)

)
F +R(k)

x

∂F
∂x

+R(k)
y

∂F
∂y

(7.35)

where the parentheses in the first term indicate that the differential operator matrix D> is only

applied to matrix R(k), and the matrices

Ix =

[
1 0 0

0 0 1

]
and Iy =

[
0 0 1

0 1 0

]
(7.36)

have been introduced to allow the partial derivatives ∂/∂x and ∂/∂y to be applied directly

to F with coefficients of R(k)
x = IxR

(k) and R(k)
y = IyR

(k). By substituting Eq. (7.35) into
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7.3. Derivation of transverse normal stress field

Eq. (7.34), an alternative definition of τ (k) in terms of the layerwise constitutive matrices R(k),

R(k)
x and R(k)

y is derived,

τ (k) =
(
D>R(k)

)
F +R(k)

x

∂F
∂x

+R(k)
y

∂F
∂y

+ T̂b. (7.37)

The significance of Eq. (7.37) is two-fold. First, separating the derivatives of F allows for

straightforward manipulations of the integration by parts step involved in the calculus of vari-

ations. Second, the first term D>R(k) in Eq. (7.37) is only non-zero for variable-stiffness

laminates as it includes derivatives of material properties R(k). Thus, Eq. (7.37) decomposes

the contributions of the transverse shear stresses into variable-stiffness and constant-stiffness

components.

7.3 Derivation of transverse normal stress field

An expression for the transverse normal stress is derived in a similar fashion by integrating

Cauchy’s transverse equilibrium equation in the absence of body forces. Thus,

∂σ
(k)
z

∂z
= −

[
∂

∂x

∂

∂y

]{
σ(k)
xz

σ(k)
yz

}
= −∇>τ (k)

where∇ =

(
∂

∂x
,
∂

∂y

)
is the del operator used to calculate the divergence of τ (k). By integrating

in the z-direction,

σ(k)
z = ∇>D>

[∫ (
Q̄

(k)
g(k)(z)−α(k)

)
dzsF

]
−∇>T̂bz

= ∇>D>
[{
Q̄

(k)
h(k)(z)−α(k)z

}
sF
]
−∇>T̂bz + b(k) (7.38)

where h(k)(z) captures the variation of σ(k)
z through the thickness of each ply k and is readily

derived by integrating the assumed polynomial shape functions.

The Nl layerwise constants b(k) are found by enforcing the Nl − 1 continuity conditions

σ(k)
z (zk−1) = σ(k−1)

z (zk−1) for k = 2, . . . , Nl, and one of the prescribed surface tractions, i.e.

either the bottom surface σ(1)
z (z0) = P̂b or the top surface σ(Nl)

z (zNl) = P̂t traction. Here, we

choose to enforce the bottom traction condition, such that the integration constants are

b(k) = ∇>D>
k∑
i=1

[{
Q̄

(i−1)
h(i−1)(zi−1)− Q̄(i)

h(i)(zi−1) +
(
α(i) −α(i−1)

)
zi−1

}
sF
]

+

∇>T̂bz0 + P̂b

= ∇>D>
[
β(k)sF

]
+∇>T̂bz0 + P̂b (7.39)

where by definition Q̄
0

= α0 = 0 and the variable β(k) has been introduced where

β(k) =
k∑
i=1

{
Q̄

(i−1)
h(i−1)(zi−1)− Q̄(i)

h(i)(zi−1) +
(
α(i) −α(i−1)

)
zi−1

}
. (7.40)
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The final expression for σ(k)
z is established by substituting the layerwise integration constants

of Eq. (7.39) back into Eq. (7.38). Thus,

σ(k)
z = ∇>D>

[{
Q̄

(k)
h(k)(z)−α(k)z + β(k)

}
sF
]
−∇>T̂b (z − z0) + P̂b. (7.41)

In the derivation of the layerwise integration constants of Eq. (7.39), the surface traction

P̂t on the top surface is not enforced explicitly. As the proof below shows, this condition is

automatically satisfied if equilibrium of the transverse shear stress field Eq. (7.29) and transverse

normal stress Eq. (7.41) is enforced. As we are dealing with an equivalent single layer, Cauchy’s

transverse equilibrium equation is integrated through the thickness to give

∫ t/2

−t/2

(
∇>τ (k) +

∂σ
(k)
z

∂z

)
dz = ∇>Q+ σ(Nl)

z (zNl)− σ
(1)
z (z0) = 0 (7.42)

where Q = (Qxz, Qyz) are the transverse shear forces. An expression for ∇>Q is derived by

taking the divergence of τ (k) in Eq. (7.29) and integrating in the z-direction. Thus,

∇>Q =

∫ t/2

−t/2
∇>τ (k)dz

= ∇>D>
Nl∑
k=1

[{
Q̄

(k)
(
h(k)(zk−1)− h(k)(zk)

)
+α(k)t(k)

}
sF
]

+∇>T̂b
Nl∑
k=1

t(k) (7.43)

where t(k) is the thickness of the kth layer. Now, an expression for σ(Nl)
z (zNl) is found by

substituting z = zNl into the expression for σ(k)
z of Eq. (7.41),

σ(Nl)
z (zNl) = ∇>D>

[{
Q̄

(Nl)h(Nl)(zNl)−α
(Nl)zNl + β(Nl)

}
sF
]
−∇>T̂b (zNl − z0) + P̂b

= ∇>D>
Nl∑
k=1

[{
Q̄

(k)
(
h(k)(zk)− h(k)(zk−1)

)
−α(k)t(k)

}
sF
]
−∇>T̂b

Nl∑
k=1

t(k) + P̂b.

By consideration of Eq. (7.43), the above expression is transformed into

σ(Nl)
z (zNl) = −∇>Q+ P̂b (7.44)

such that by substituting Eq. (7.44) back into Cauchy’s single-layer equilibrium Eq. (7.42),

∇>Q+
(
−∇>Q+ P̂b

)
− σ(1)

z (z0) = 0. (7.45)

Hence, as σ(1)
z (z0) = P̂b the expression in Eq. (7.45) is satisfied. This is the second significant

characteristic of the present higher-order model; as long as Eq. (7.42) is satisfied when deriving

the governing field equations and boundary conditions from a variational statement, equilibrium

of the interfacial and surface normal tractions is automatically enforced a priori using the stress

assumptions in Eqs. (7.24), (7.29) and (7.41).

Finally, the layerwise coefficients in the expression for σ(k)
z in Eq. (7.41) are conveniently
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7.3. Governing equations from the HR mixed-variational statement

combined into a single layerwise vector, such that

σ(k)
z = ∇>D>

[
d(k)sF

]
−∇>T̂b (z − z0) + P̂b. (7.46)

7.4 Governing equations from the Hellinger-Reissner mixed-

variational statement

The HR mixed-variational statement for a 3D continuum was introduced in Eq. (2.19) of Chap-

ter 2. In the HR principle, the PMCE functional is enhanced by enforcing Cauchy’s equilibrium

equations and natural boundary conditions using displacement Lagrange multipliers. Hence,

ΠHR(u,σ) =

∫
V
U∗0 (σij)dV −

∫
S1

ûitidS +

∫
V
ui (σij,j + fi) dV −

∫
S2

ui
(
ti − t̂i

)
dS (7.47)

where U∗0 (σij) is the complementary energy density written in terms of the Cauchy stress tensor

σij , and the displacements ui are the Lagrange multipliers that enforce Cauchy’s equilibrium

equations σij,j + fi in a variational sense throughout the volume of the continuum and the

traction boundary conditions ti − t̂i on the boundary surface S2. The tractions ti = σijnj =

(σnx, σny, σnz) are the tractions in the (x, y, z) directions acting on the boundary surface with

outward normal n = (nx, ny, nz).

In the present work, the model assumption of the in-plane displacements is given by Eq. (7.10),

i.e. (ux, uy) = f (k)
u U , whereas the transverse displacement uz = w0 is constant throughout the

thickness. Thus, the term associated with Cauchy’s equilibrium equations in the HR functional

in the absence of body forces is written as

ΠL =

∫
V
uiσij,jdV =

∫
V

[
U>f (k)>

u

(
D>σ(k) +

∂τ (k)

∂z

)
+ w0

(
∇>τ (k) +

∂σ
(k)
z

∂z

)]
dV (7.48)

where all quantities are defined as in the previous two sections. Taking the first variation of this

functional with respect to the displacement variables, i.e. δU and δw0, results in the higher-order

equilibrium equations of the theory. For example, by integrating the first term in Eq. (7.48) by

parts in the z-direction and taking the first variation with respect to the displacement variables

we have

δΠL1 =

∫∫∫ t/2

−t/2
δU>

(
f (k)>
u D>σ(k) − ∂f

(k)>
u

∂z
τ (k)

)
dzdydx+

∫∫
δU> f (k)>

u τ (k)
∣∣∣t/2
−t/2

dydx

=

∫∫
δU>

[
DFF∗ − T + f (Nl)

>
u (zNl)T̂t − f

(1)>
u (z0)T̂b

]
dydx (7.49)

where we have made use of Eq. (7.19) that the stress resultants F are the z-direction integrals of

the in-plane stresses σ(k) multiplied by through-thickness shape functions. The vector of stress

resultants F∗ used in Eq. (7.49) is the same as F defined in Eq. (7.19) but does not contain

the stress resultants associated with the derivatives of the ZZ function φ
(k)
,i , i.e. M∂φ

x and M∂φ
y ,

as these do not feature in f (k)
u . Furthermore, DF = INo ⊗D> with ⊗ denoting the Kronecker
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matrix product2 and INo the (No + 2)× (No + 2) identity matrix. Thus,

DFF∗ =

∫ t/2

−t/2
f (k)>
u D>σ(k)dz. (7.50)

Finally, a vector of transverse shear stress resultants, i.e. a vector of higher-order transverse

shear forces

T = (0, 0, Qx, Qy, . . . , Q
φ
x, Q

φ
y ) that balances the gradients of the stress resultants F∗ in the

higher-order equilibrium equations, has been defined as follows:

T =

∫ t/2

−t/2

∂f
(k)>
u

∂z
τ (k)dz. (7.51)

When the first variation is set to zero, the term in square brackets of Eq. (7.49) represents the

collection of equilibrium equations of the equivalent single-layer written in matrix form. These

are the same higher-order equilibrium equations that are derived from the assumed displacement

field if the PVD is applied. For clarity, the equilibrium equations and associated Lagrange

multipliers for a theory with No = 1 and ZZ functionality are

δux0 : Nx,x +Nxy,y + T̂tx − T̂bx = 0

δuy0 : Nxy,x +Ny,y + T̂ty − T̂by = 0

δux1 : Mx,x +Mxy,y −Qx + zNl T̂tx − z0T̂bx = 0

δuy1 : Mxy,x +My,y −Qy + zNl T̂ty − z0T̂by = 0

δuφx : Mφ
x,x +Mφ

xy,y −Qφx + φ(Nl)
x (zNl)T̂tx − φ

(1)
x (z0)T̂bx = 0

δuφy : Mφ
xy,x +Mφ

y,y −Qφy + φ(Nl)
y (zNl)T̂ty − φ

(1)
y (z0)T̂by = 0

(7.52)

where the comma notation is used to denote differentiation, (Nx, Ny, Nxy), (Mx,My,Mxy) and

(Qx, Qy) are the classical membrane forces, bending moments and transverse shear forces respec-

tively, whereas (Mφ
x ,M

φ
y ,M

φ
xy) and (Qφx, Q

φ
y , ) are the ZZ bending moments and ZZ transverse

shear forces, respectively.

For a general assumption of displacements u and stresses σ, the entire set of higher-order

equilibrium equations in the square brackets of Eq. (7.49) needs to be satisfied. However, in the

present work, the in-plane stresses and transverse shear stresses are inherently equilibrated due

to the a priori integration step in Cauchy’s equilibrium equations. As shown in the following,

this means that the equilibrium equations of Eq. (7.49) are, in fact, automatically satisfied and

do not need to be enforced in the variational statement.

Returning to the definition of the transverse shear stress resultants and integrating by parts,

T =

∫ t/2

−t/2

∂f
(k)>
u

∂z
τ (k)dz = f (k)>

u τ (k)
∣∣∣t/2
−t/2
−
∫ t/2

−t/2
f (k)>
u

∂τ (k)

∂z
dz. (7.53)

2If A is an m× n matrix and B is a q × r matrix, then the Kronecker matrix product A⊗B is the mq × nr

block matrix A⊗B =

A11B . . . A1nB
...

. . .
...

Am1B . . . AmnB

.
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As the model assumption for the transverse shear stresses is derived exactly from Cauchy’s

equilibrium equations in Eq. (7.25), we can replace τ (k)
,z with −D>σ(k). Hence,

T = f (Nl)
>

u (zNl)T̂t − f
(1)>
u (z0)T̂b +

∫ t/2

−t/2
f (k)>
u D>σ(k)dz (7.54)

and by using the expression in Eq. (7.50)

T = f (Nl)
>

u (zNl)T̂t − f
(1)>
u (z0)T̂b +DFF∗. (7.55)

Thus, in consideration of Eq. (7.55), all higher-order equilibrium equations in the square brackets

of Eq. (7.49) vanish identically when using the present equilibrated assumptions for in-plane

stresses σ(k) Eq. (7.24) and transverse shear stresses τ (k) Eq. (7.29), and therefore need not be

enforced in the HR principle via Lagrange multipliers.

However, as discussed in Sections 7.2 and 7.3, equilibrium of the membrane forces N =

(Nx, Ny, Nxy) with the applied surface shear tractions, and equilibrium of the transverse shear

forces Q = (Qx, Qy) with the applied surface normal tractions needs to be enforced to guarantee

that the tractions on the top surface are recovered accurately. Therefore, a new set of governing

equations for linear plate stretching and bending is derived by means of a modified HR principle

with only the membrane equilibrium Eq. (7.30) and bending equilibrium Eq. (7.42) enforced

via Lagrange multipliers u = (ux0 , uy0 , w0). Thus,

Π(u,F) =

∫
V
U∗0 (F)dV −

∫
S1

ûitidS +

∫∫ [
ux0 uy0

] (
D>N + T̂t − T̂b

)
dydx+∫∫

w0

(
∇>Q+ P̂t − P̂b

)
dydx−

∫
S2

ui
(
ti − t̂i

)
dS, i, j = x, y, z. (7.56)

As observed by other authors, such as Batra et al. [58, 59], enforcing the equilibrium equa-

tions in the variational statement is a powerful technique for predicting accurate 3D stress fields

in multilayered structures in a variationally consistent manner. However, the present HR func-

tional results in a structural model with fewer degree of freedom than the generalised model

of Batra et al. as the in-plane and transverse shear stresses are based on the same degrees of

freedom. A possible disadvantage of this approach is that the reduction of variables leads to a

loss in fidelity or general applicability of the model. However, this is offset by a considerable

reduction in computational cost due to fewer equilibrium equations and variables. As the nu-

merical results in the following Chapter 8 document, the reduced number of degrees of freedom

in the present HR formulation is not detrimental to the accuracy of the model, even for highly

heterogeneous straight-fibre or tow-steered composite laminates and sandwich beams. There-

fore, the model strikes a favourable balance between modelling accuracy and computational

effort.

For a linear elastic body with a predefined constitutive relation, the complementary energy

density is written in terms of σij and the compliance tensor Sijkl. Hence,

U∗0 (σij) =
1

2
Sijklσijσkl. (7.57)
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In Chapters 5 and 6 it was found that the transverse normal stress is at least one order of

magnitude smaller than the in-plane and transverse shear stresses for practical engineering

laminates under classical load cases. Thus, the effect of transverse normal stresses is henceforth

assumed to be small. Therefore, the contribution of σz in the complementary energy density

Eq. (7.57) is ignored, such that for a structure comprised of monoclinic laminae we can write

U∗0 (F) =
1

2
σ(k)>Q̄

(k)−1

σ(k) +
1

2
τ (k)>G(k)−1

τ (k) (7.58)

where the in-plane stresses and transverse shear stresses are defined in Eqs. (7.24) and (7.34),

respectively, Q̄ is the transformed reduced stiffness matrix for plane stress in z as defined in

Eq. (7.18), and the transverse shear constitutive matrix is given by

G(k) =

[
C55 C54

C45 C44

](k)

(7.59)

where C55 = Gxz, C44 = Gyz, and C54 = C45 are the coupling terms between the two orthogonal

transverse shear deformations. For orthotropic 0◦ and 90◦ lamina C54 = C45 = 0, whereas for

general angle-ply laminae C54 = C45 6= 0. As indicated by Eq. (7.58), once the substitutions

for σ(k) and τ (k) have been made from Eqs. (7.24) and (7.34), respectively, the complementary

energy density is a function of the stress resultants F only. Note that even though the transverse

normal stress σ(k)
z is ignored in the complementary energy density Eq. (7.58), the transverse

normal stress is readily calculated from the model assumption Eq. (7.46) once the stress resultant

field F is computed.

For equilibrium of the system, the first variation of the functional Π in Eq. (7.56) must

vanish. Thus, substituting Eq. (7.58) back into the functional in absence of the body forces fi,

the first variation of the modified HR functional reads

δΠ(u,F) = δ

[∫
V

{
1

2
σ(k)>Q̄

(k)−1

σ(k) +
1

2
τ (k)>G(k)−1

τ (k)

}
dV +∫∫ {[

ux0 uy0

] (
D>N + T̂t − T̂b

)
+ w0

(
∇>Q+ P̂t − P̂b

)}
dydx −∫

S1

(ûxtx + ûyty + ûztz) dS −
∫
S2

{
ux
(
tx − t̂x

)
+ uy

(
ty − t̂y

)
+ uz

(
tz − t̂z

)}
dS

]
= 0. (7.60)

The new set of governing equations is derived by substituting the stress fields for σ(k) and τ (k)

from Eqs. (7.24) and (7.34) into Eq. (7.60) and expanding the first variation. The corresponding

Euler-Lagrange field equations in terms of the functional unknowns u and F are

δ
[
ux0 uy0

]
: D>N + T̂t − T̂b = 0 (7.61a)

δw0 : ∇>D>M+∇>
(
zNl T̂t − z0T̂b

)
+ P̂t − P̂b = 0 (7.61b)

δF> : (s+ η)F + ηx
∂F
∂x

+ ηy
∂F
∂y

+ ηxx
∂2F
∂x2

+ ηxy
∂2F
∂x∂y

+ ηyy
∂2F
∂y2

+

χT̂b + χx
∂T̂b
∂x

+ χy
∂T̂b
∂y

+ Leq = 0 (7.61c)
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where N and M are the classical membrane stress resultants and bending moments, respec-

tively, and are subsets of the full stress resultant vector F . The pertinent essential and natural

boundary conditions are given by

δF>bc : ηbcF + ηbcx
∂F
∂x

+ ηbcy
∂F
∂y

+ χbcT̂b + Lbc = Ûbc

δQnz : w0 = ŵ0

 on C1 (7.62a)

δU>bc : F∗bc = F̂∗bc and δw0 : Qnz = Q̂nz on C2 (7.62b)

where Fbc = (Nn, Nns,Mn,Mns, . . . ) is the column vector of stress resultants transformed to the

local normal-tangential coordinate system (n, s, z) of the boundary curve Γ, Qnz is the transverse

shear force acting normal to the boundary surface, and Ûbc =
(
ûn0 , ûs0 , ûn1 , ûs1 , . . . , û

φ
n, û

φ
s , 0, 0

)
is a column vector of prescribed displacement variables on the boundary. Similarly, F∗bc is the

stress resultant vector previously defined in Eq. (7.50), which is the same as F without the

stress resultants associated with φ
(k)
,i , i.e. M∂φ

x and M∂φ
y , and transformed to the local normal-

tangential coordinate system (n, s, z) of the boundary curve.

The governing field equations related to δ
[
ux0 uy0

]
and δF> are written in vector form

with each row defining a separate equation. The equations related to δu are the classical in-plane

membrane and bending equilibrium equations. These equilibrium equations are supplemented

by “enhanced” constitutive equations from δF> in Eqs. (7.61c). In these equations, the well-

known constitutive equations of CLA written in inverted form, i.e.{
ε0

κ

}
=

[
A B

B D

]−1{
N
M

}
= sF , (7.63)

are enhanced with differential terms of the stress resultants F , where F may also include higher-

order moments beyond N and M. Thus, all O × O matrices η in Eqs. (7.61c) are collections

of transverse shear correction factors that when multiplied by their corresponding higher-order

moment terms
∂nF
∂xni

correct the product of the direct O×O compliance matrix s and moments

F . Similarly, the O × 2 matrices χ are correction factors related to the applied surface shear

tractions. In general, the addition of the superscript bc to any matrix denotes correction factors

that are applicable to the boundary curve Γ and therefore include the outward normal vector

n = (nx, ny).

Finally, Leq is aO×1 column vector that only includes derivatives of the Lagrange multipliers

u = (ux0 , uy0 , w0) and captures the reference surface stretching strains ε0 and curvatures κ,

Leq =

[
−∂ux0

∂x
−∂uy0

∂y
−∂ux0

∂y
− ∂uy0

∂x

∂2w0

∂x2

∂2w0

∂y2
2
∂2w0

∂x∂y
0 . . .

]>
. (7.64)

Similarly, Lbc is a O × 1 column vector that includes the transformed Lagrange multipliers

un0 = nxux0 + nyuy0 , us0 = −nyux0 + nxuy0 and rotations
∂w0

∂n
and

∂w0

∂s
of the boundary

perimeter Γ,

Lbc =

[
un0 us0 −∂w0

∂n
−∂w0

∂s
0 . . .

]>
. (7.65)
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Thus, the physical significance of the displacement boundary conditions in Eq. (7.62a) is that

Kirchhoff rotations normal and tangential to the boundary curve
∂w0

∂n
and

∂w0

∂s
, respectively,

are modified by transverse shear rotations. Therefore, the static inconsistency that occurs for

Reddy-type models discussed in Chapter 3 does not arise here because the slope of the middle

surface of the plate can change at the boundary.

The full derivation of the governing equations, including details of all transverse shear correc-

tion coefficients, are given in Appendix B. The governing field equations Eq. (7.61) and boundary

conditions Eq. (7.62) above are valid for any multilayered laminate comprised of linear elastic

anisotropic laminae. Therefore, the HR model derived herein is applicable to straight-fibre and

tow-steered composites as well as isotropic single-layer plates or multilayered ceramic structures,

such as laminated glass. For plates with material properties invariant of the planar (x, y) direc-

tions, the governing equations simplify considerably as any terms involving planar derivatives

vanish. Thus, for straight-fibre laminates and isotropic plates η = ηx = ηy = χ = ηbc = 0.

7.5 Conclusions

In this chapter, the higher-order HR formulation for laminated one-dimensional beams presented

in Chapter 4 was extended to two-dimensional plates. Higher-order fidelity is introduced into

the model by writing the in-plane stress field as a Taylor series expansion of global and local

higher-order stress resultants.

The derivation of the HR model in Section 7.4 is based on the notion that accurate trans-

verse shear and transverse normal stress fields can be derived by integrating the in-plane stresses

of displacement-based, higher-order theories in Cauchy’s equilibrium equations. Based on the

assumption of a generalised in-plane displacement field, a higher-order in-plane stress field in

terms of stress resultant variables was defined in Section 7.1 and used to derive equilibrated

transverse stresses in Sections 7.2 and 7.3. As shown in Sections 7.2 and 7.3, transverse stress

fields that satisfy the surface and interfacial equilibrium conditions are mathematically guar-

anteed in the present model if the classical membrane and bending equilibrium equations are

enforced in a variational statement. Furthermore, as the transverse shear stresses are derived by

integrating the in-plane stresses in Cauchy’s equilibrium equations, the higher-order equilibrium

equations need not be enforced. Thus, a contracted Hellinger-Reissner-type functional is used

to derive a new set of governing field equations and boundary conditions. In this contracted

HR functional, the number of variables in the model is greatly reduced; for an expansion of the

in-plane variables up to the order of zNo the reduction in the number of variables is 2No.

Due to the higher-order fidelity, the model can be applied to laminates comprised of layers

with structural properties that vary by orders of magnitude and also to advanced composites

with curvilinear fibre paths. Thus, the model is applicable for modelling the bending and

stretching of plates with heterogeneity in all three dimensions.

In the present approach the accuracy of the transverse stresses is dependent on the order of

the assumed in-plane stress field expansion because, for computational efficiency, the transverse

stress fields are based on the same variables as the in-plane stress fields. In the derivation

presented herein, the effect of the transverse normal stress was neglected. Based on the findings
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in Chapters 5 and 6 this is believed to be a valid assumption for practical engineering laminates

under classical loading conditions. Nevertheless, the author would like to suggest two possible

ways of incorporating the effects of transverse normal deformation if these effects are deemed

to be significant. The first is to use the generalised approach presented by Batra and co-

workers [58,59] of assuming separate Taylor or Legendre series expansions for the six stress and

three displacement fields. The drawback of this approach is that the number of variables is

significantly increased. To maintain the computational efficiency of shared variables presented

herein, only the normal displacement field for uz in Eq. (7.1) can be expanded as a Taylor series.

In this case, the vector of stress resultants F will include extra higher-order moments that

capture the stretching in the normal direction and its Poisson effect on the in-plane stresses.

Once the expression for the in-plane stresses incorporating the effects of transverse normal

deformation has been established, the rest of the model derivation follows the outline presented

in this chapter.
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Chapter 8

Three-Dimensional Stress Fields in

Straight-Fibre and Tow-Steered Plates

The previous chapter introduced a mixed displacement/stress-based, higher-order ZZ theory

derived from the HR mixed-variational statement. The displacement and stress fields were

expanded in a Taylor series of the through-thickness coordinate z, such that the governing

equations were derived in generalised notation that allows the order of the model to be specified

a priori without having to re-derive the equations. Thus, the model is suited for modelling

highly heterogeneous laminated plates comprised of straight-fibre and variable-stiffness plies,

honeycomb and foam cores, or other material combinations where material properties vary by

orders of magnitude.

In this chapter the derived HR formulation is compared against 3D elasticity and 3D FEM

results for a number of straight-fibre and variable-stiffness laminates, as well as sandwich plates.

Overall, four different implementations of the HR formulation are considered. The first is a

third-order model that does not account for ZZ effects denoted by HR3. The displacement

and stress field expansions are truncated after the z3 term, such that there are twelve global

stress resultants in F . A third-order global expansion field is important for capturing “stress-

channelling” effects that arise in highly-orthotropic laminates. Second, the third-order model

is enhanced via a ZZ degree of freedom using either MZZF, denoted by HR3-MZZF, or the

RZT ZZ function. In the latter case, a distinction is made between the classic implementation

of the RZT ZZ function, denoted by HR3-RZT, and Gherlone’s adaptation [54] that accounts

for the presence of Externally Weak Layers (EWLs) discussed in Section 4.1.1, and denoted by

HR3-RZTmx, where mx stands for “modified external”. For RZTmx the RZT ZZ function is

calculated from modified values of the transverse shear moduli G(k)
xz and G(k)

yz of layer k:

• If G
(1)
iz < G

(2)
iz , then G

(1)
iz = G

(2)
iz for i = x, y.

• If G
(Nl)
iz < G

(Nl−1)
iz , then G

(Nl)
iz = G

(Nl−1)
iz for i = x, y.

(8.1)

where Nl is the total number of layers. The rule does not apply if the condition reduces the

laminate to have the same transverse shear moduli for all layers, as would be the case for

[0/90], [90/0] and [90/0/90] laminates. The ZZ functionality adds three additional ZZ bending

moments in the case of MZZF and four in the case of RZT (see itemised list on page 161),

such that the number of unknowns in F is increased to fifteen and sixteen, respectively. For

straight-fibre laminates, the ZZ moments associated with φ
(k)
,i vanish as the ZZ function does

not vary over the planform of the plate.

The presentation of the results is split into two sections. Section 8.1 shows the benchmark-

ing results for straight-fibre laminates, whereas Section 8.2 treats tow-steered laminates. In
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8.1. 3D stress fields in straight-fibre laminates and sandwich plates

Section 8.1.1, orthotropic laminates are compared with Pagano’s 3D elasticity solution [69] of

an orthotropic plate simply supported along all four edges and loaded by a sinusoidal pressure

loading on the top surface. This 3D elasticity solution is not applicable to anisotropic laminates

with extension/shear coupling, bend/twist coupling or load cases involving shear tractions ap-

plied to the top and bottom surfaces as the transverse displacement is restricted to a double sine

wave. Therefore, high-fidelity 3D FEM solutions from Abaqus are used to compare more general

laminations and load cases in Section 8.1.2. This second test case considers general anisotropic

laminates that are fully clamped along all four edges and loaded by a constant pressure loading

and shear traction on the top surface. Similar 3D FEM solutions are used in Section 8.2.1 to

test the accuracy of the model for tow-steered laminates. A large number of different stacking

sequences and characteristic in-plane length to width ratios are considered to validate the gen-

eral applicability of the HR model. Finally, the relative effects of transverse shear deformation

on tow-steered laminates, as compared to a quasi-isotropic straight-fibre laminate, is presented

in Section 8.2.2.

8.1 3D stress fields in straight-fibre laminates and sandwich

plates

Consider a square plate of unit in-plane dimensions a = b = 1 m and total thickness t < a, b.

The plate is comprised of Nl orthotropic, straight-fibre laminae of layer thickness t(k), material

stiffness tensor C(k) and fibre orientation α(k). The individual layers can be arranged in any

general fashion but are assumed to be perfectly bonded, such that displacement and traction

continuity at the interfaces is guaranteed. The plate is subjected to certain displacement or

traction boundary conditions along its four straight-edge surfaces, e.g. simply supported or

rigidly built-in, and is loaded via certain external tractions on the top and bottom surfaces. In

reaction to the applied loading and constraining boundary conditions, the plate is assumed to

deform isothermally into a new static equilibrium state.

8.1.1 Benchmarking of 3D stresses in orthotropic laminates

8.1.1.1 Model implementation

As a first test, consider the multilayered plate loaded by a sinusoidally distributed pressure load

on the top surface and simply supported along all four edges shown in Figure 8.1. In the HR

formulation, the 3D continuum is compressed onto an equivalent single layer Ω coincident with

the midplane of the plate as depicted by the grey surface. All externally applied tractions are

zero except for the sinusoidal pressure on the top surface P̂t = p0 sin(πx/a) sin(πy/b).

Following Pagano [69], an exact 3D elasticity solution exists for this problem with arbitrary

number of orthotropic or isotropic layers, and this is readily implemented in software packages,

such as Matlab. Thus, Pagano’s solution serves as the benchmark for the orthotropic composite

laminates and sandwich plates considered in this section.

176



8.1. 3D stress fields in straight-fibre laminates and sandwich plates

z

y

x

t

a b

Sim
ple

Sup
port

Sim
ple

Sup
por
t

SimpleSupport

SimpleSupport

O

Figure 8.1: A composite plate loaded by a sinusoidally distributed pressure load on the top
surface and simply supported along all four edges. In the HR formulation, the
3D continuum is compressed onto an equivalent single layer Ω coincident with the
midplane of the plate.

For straight-fibre laminates the HR governing field equations (7.61) are given by

sF + ηxxF,xx + ηyyF,yy + ηxyF,xy + Leq = 0 (8.2a)

Nx,x +Nxy,y = 0 (8.2b)

Nxy,x +Ny,y = 0 (8.2c)

Mx,xx + 2Mxy,xy +My,yy + P̂t = 0 (8.2d)

where the comma notation is used to denote differentiation, and Nx, Ny, Nxy and Mx,My,Mxy

are the classical membrane forces and bending moments, respectively, and are the first six entries

in the stress resultant array F .

The simply supported boundary conditions, i.e. each edge can rotate and move normal to

its boundary curve but not tangential to it, are expressed mathematically as

at x = 0, a : σx = uy0 = w0 = 0 (8.3a)

at y = 0, b : σy = ux0 = w0 = 0. (8.3b)

Variable assumptions that satisfy the conditions in Eq. (8.3) and that are sufficiently general

to solve the boundary value problem depicted in Figure 8.1, are given by

ux0 = U cos
(πx
a

)
sin
(πy
b

)
, uy0 = V sin

(πx
a

)
cos
(πy
b

)
, w0 = W sin

(πx
a

)
sin
(πy
b

)
(8.4a)

Fx = Fx0 sin
(πx
a

)
sin
(πy
b

)
, Fy = Fy0 sin

(πx
a

)
sin
(πy
b

)
, Fxy = Fxy0 cos

(πx
a

)
cos
(πy
b

)
(8.4b)

where Fx = (Nx,Mx, . . . ,M
φ
x ) are the x-wise axial stress resultants, Fy = (Ny,My, . . . ,M

φ
y )
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8.1. 3D stress fields in straight-fibre laminates and sandwich plates

are the y-wise lateral stress resultants, and Fxy = (Nxy,Mxy, . . . ,M
φ
xy) are the in-plane shear

stress resultants. Note that Mφ
xy does not exist for HR3, Mφ

xy = (Mφ
xy,M

φ
yx) for HR3-RZT and

Mφ
xy = Mφ

xy for HR3-MZZF (see itemised list on page 161).

Substituting Eq. (8.4) into the governing differential equations (8.2) results in a set of Neq

algebraic equations in Neq variables (Fx0 , Fy0 , Fxy0 , U, V,W ), where Neq = 15 for HR3, Neq = 18

for HR3-MZZF and Neq = 19 for HR3-RZT. Note that for orthotropic laminates considered in

this problem, the extension/shear coupling stiffness terms Q̄16 = Q̄26 = 0. As a result, all

extension/shear and bend/twist coupling terms sij in the direct compliance matrix s must

vanish, i.e. s13 = s16 = · · · = s23 = s26 = · · · = s31 = s32 = s34 = s35 = · · · = 0 because

all components in s are linearly dependent on Q̄. For the direct shear correction matrix ηxx,

the terms associated with Q̄16 and Q̄26 also vanish, i.e. ηxx13 = ηxx16 = · · · = ηxx23 = ηxx26 =

· · · = ηxx31 = ηxx32 = ηxx34 = ηxx35 = · · · = 0, and similarly for the direct stiffness matrix ηyy.

On the contrary, for the in-plane coupling shear correction matrix ηxy, these aforementioned

vanishing terms are the only non-zero values, such that ηxy11 = ηxy12 = ηxy14 = ηxy15 = · · · =

ηxy21 = ηxy22 = ηxy24 = ηxy25 = · · · = ηxy33 = ηxy36 = · · · = 0.

According to the definition of ηxx and ηyy in Eqs. (B.27d) and (B.27e), these two direct

shear correction matrixes are functions of the productsR(k)>
x ·R(k)

x andR(k)>
y ·R(k)

y , respectively,

and by extension of Eq. (7.35) functions of
(
IxQ̄

(k)
)>
·
(
IxQ̄

(k)
)

and
(
IyQ̄

(k)
)>
·
(
IyQ̄

(k)
)

,

respectively. The in-plane coupling shear correction matrix ηxy in Eq. (B.27f), however, is a

function of mixed terms R(k)>
x · R(k)

y + R(k)>
y · R(k)

x , and therefore depends on
(
IxQ̄

(k)
)>
·(

IyQ̄
(k)
)

+
(
IyQ̄

(k)
)>
·
(
IxQ̄

(k)
)

. By computing these matrix products involving Ix, Iy and

Q̄
(k)

with Q̄16 = Q̄26 = 0, the set of vanishing shear correction factors above is readily verified.

Thus, in consideration of these vanishing compliance and shear correction terms, and the

fact that a = b = 1 m, the set of algebraic governing field equations reads

KfF0 +KuU0 = 0 (8.5a)

Nx0 −Nxy0 = 0 (8.5b)

Ny0 −Nxy0 = 0 (8.5c)

π2 (Mx0 +My0 − 2Mxy0) = p0 (8.5d)

where F0 = (Nx0 , Ny0 , Nxy0 ,Mx0 ,My0 ,Mxy0 , . . . ) and U0 = (U, V,W ). The stiffness matrices

Kf and Ku multiplying the unknowns F0 and U0 are given by,

Kf :
Kfii = sii − π2 (ηxxii + ηyyii) , Kfij = π2ηxyij

Kfji = π2ηxyji , Kfjj = sjj − π2
(
ηxxjj + ηyyjj

) and Ku =



π 0 0

0 π 0

−π −π 0

0 0 −π2

0 0 −π2

0 0 2π2

0 0 0
...

...
...


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where subscripts ij denote components of the associated matrices with indices i and j defined

by

i = (1, 2, 4, 5, . . . , 10, 11), j = (3, 6, . . . , 12) for HR3

i = (1, 2, 4, 5, . . . , 13, 14), j = (3, 6, . . . , 15) for HR3-MZZF

i = (1, 2, 4, 5, . . . , 13, 14), j = (3, 6, . . . , 15, 16) for HR3-RZT.

Thus, Eqs. (8.5) represent a system of Neq simultaneous algebraic equations that are readily

solved for the Neq unknowns (F0, U0) by standard matrix inversion. In the present work, com-

putations of all stiffness terms and shear correction factors, and the matrix inversion operations

were carried out in Matlab.

8.1.1.2 Model validation

To test the general applicability of the HR models a variety of different symmetric and non-

symmetric composite laminates and sandwich plates are tested. Table 8.1 shows the two

different materials used throughout the analysis. The first material c is representative of a

high-performance carbon-fibre reinforced plastic with high orthotropy of in-plane modulus to

transverse shear modulus. The second material h is a transversely isotropic honeycomb core and

features significantly lower transverse shear stiffness than material c to exacerbate the ZZ effect.

The stacking sequences of different laminates including layer orientations, layer thicknesses and

layer material codes are summarised in Table 8.2.

Table 8.1: Mechanical properties of materials c and h.

Material E1 E2 E3 G12 G13 G23

c 172.5 GPa 6.9 GPa 6.9 GPa 3.45 GPa 3.45 GPa 1.38 GPa
h 276 MPa 276 MPa 3.45 GPa 110.4 MPa 414 MPa 414 MPa

Material ν12 ν13 ν23

c 0.25 0.25 0.25
h 0.25 0.02 0.02

Table 8.2: Analysed orthotropic stacking sequences. Subscripts indicate the repetition of a
property over the corresponding number of layers. Layer thicknesses stated as
ratios of total laminate thickness.

Laminate Thickness Ratio Material Stacking Sequence

A [0.3/0.7] [c2] [0/90]
B [(1/3)3] [c3] [0/90/0]
C [0.254] [c4] [0/90/0/90]
D [0.25] [c5] [0/90/0/90/0]
E [(1/20)2/0.8/(1/20)2] [c2/h/c2] [0/90/0/90/0]
F [0.12/0.23/0.12] [c2/h/0.01h/h/c2] [90/05/90]
G [0.1/0.3/0.35/0.25] [c2/h/c] [0/90/0/90]
H [0.12/0.3/0.4/0.052] [c2/0.01h/h/c2] [90/03/90/0]
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Laminates A-D are composite laminates, whereas laminates E-H are sandwich plates. Lam-

inates F and H feature two different kinds of sandwich cores, the full constitutive core h and the

degraded core 0.01h, for which all material moduli of material h are degraded by a factor of 100.

As a variety of thin and thick laminates with characteristic length to thickness ratios ranging

from a/t = 100 to a/t = 5 are investigated in this section, the layer thicknesses are quoted

as ratios of the total laminate thickness. Overall, the laminates in Table 8.2 were chosen to

represent a set of highly heterogeneous laminates that test the full capability of the HR models

and reveal shortcomings that require further refinement.

Henceforth, all deflection and stress results are presented in normalised form. The chosen

metrics for assessing the accuracy of the HR models are the maximum transverse bending

deflection w0 and the full 3D stress field, i.e. axial stress σx, lateral stress σy, in-plane shear

stress σxy, transverse shear stresses τxz and τyz, and transverse normal stress σz. The normalised

quantities are defined as follows:

w̄0 =
E

(c)
2 t2

p0a2b2

∫ t
2

− t
2

uz

(
a

2
,
b

2
, z

)
dz

σ̄x(z) =
t2

p0a2
· σx

(
a

2
,
b

2
, z

)
, σ̄y(z) =

t2

p0b2
· σy

(
a

2
,
b

2
, z

)
, σ̄xy(z) =

t2

p0ab
· σxy

(
a

4
,
b

4
, z

)
σ̄xz(z) =

1

p0
· σxz

(
0,
b

2
, z

)
, σ̄yz(z) =

1

p0
· σyz

(a
2
, 0, z

)
, σ̄z(z) =

1

p0
· σz

(
a

2
,
b

2
, z

)
(8.6)

and are calculated at the indicated locations (x, y, z) throughout the 3D plate. Note that

the bending deflection is normalised using the matrix-dominated modulus E
(c)
2 of material c.

Furthermore, the normalised bending deflection w̄0 for the HR models is constant through

the thickness of each laminate and is thus compared against Pagano’s [69] normalised average

through-thickness deflection. As w̄0 is calculated at the in-plane centroid of the plate, this metric

corresponds to the maximum bending deflection. Similarly, the normal stress metrics σ̄x, σ̄y

and σ̄z are also computed at the in-plane centroid of the plate. The two transverse shear stress

metrics σ̄xz and σ̄yz are calculated at the midspan locations of the supported edges, whereas

the in-plane shear stress is taken at the quarterspan of both in-plane x- and y-dimensions.

The relative percentage errors in the normalised metrics of Eq. (8.6) for the four HR models

HR3, HR3-RZT, HR3-RZTmx and HR3-MZZF with respect to Pagano’s 3D elasticity solu-

tion [69] are shown Tables 8.3-8.10. The results for Pagano’s solution are given to four signifi-

cant figures, whereas the percentage errors are cited to two decimal places. These tables allow

the accuracy of the four HR models to be compared for a number of different stacking sequences

and characteristic length to thickness ratios ranging from thin laminates with a/t = 100 to thick

laminates with a/t = 5.

As indicated by the table headings, the results in Tables 8.3-8.10 compare the absolute

maximum through-thickness values of the stress metrics σ̄x, σ̄y, σ̄xy, σ̄xz and σ̄yz, where the

notation ∨ |m| is used to indicate the absolute maximum value of metric m. For the transverse

normal stress metric σ̄z, the value at the interface z = zNl−1 between layer Nl and Nl−1, i.e. at

the first layer interface from the top of the laminate, is used. Laminates A and B are two- and

three-layer laminates, respectively, and therefore the RZT modification rule for EWLs given in
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Table 8.3: Orthotropic laminate A: Percentage error in normalised bending deflection and 3D
stresses for various HR models and a/t ratios with respect to Pagano’s solution [69].

a/t Model |w̄0| ∨ |σ̄x| ∨ |σ̄y| ∨ |σ̄xy| ∨ |σ̄xz| ∨ |σ̄yz| σ̄z(zNl−1)

100

Pagano 0.01065 0.7159 0.7159 0.02625 33.56 33.56 -0.5000
HR3 (%) 0.01 -0.01 -0.01 0.00 -0.01 0.00 0.00
HR3-RZT 0.01 0.00 -0.02 0.02 0.00 -0.02 0.01

HR3-MZZF 0.01 -0.01 -0.01 0.00 -0.01 0.00 0.00

50

Pagano 0.01070 0.7164 0.7163 0.02627 16.78 16.77 -0.5000
HR3 (%) 0.02 -0.05 -0.04 -0.01 0.00 0.02 0.00
HR3-RZT -0.02 -0.03 -0.05 0.02 -0.01 0.00 0.01

HR3-MZZF 0.02 -0.05 -0.04 -0.01 0.00 0.02 0.00

20

Pagano 0.01104 0.7196 0.7193 0.02641 6.698 6.690 -0.5000
HR3 (%) 0.13 -0.28 -0.24 -0.05 0.06 0.18 0.01
HR3-RZT 0.13 -0.28 -0.24 -0.05 0.06 0.18 0.01

HR3-MZZF 0.13 -0.28 -0.24 -0.05 0.06 0.18 0.01

10

Pagano 0.01226 0.7304 0.7309 0.02688 3.326 3.316 -0.4996
HR3 (%) 0.47 -1.02 -1.08 -0.17 0.33 0.64 0.08
HR3-RZT 0.47 -1.02 -1.08 -0.17 0.34 0.64 0.08

HR3-MZZF 0.47 -1.02 -1.08 -0.17 0.34 0.64 0.08

5

Pagano 0.01711 0.7671 0.7894 0.02853 1.610 1.621 -0.4954
HR3 (%) 1.33 -2.97 -5.71 -0.33 2.09 1.40 0.93
HR3-RZT 1.33 -2.99 -5.73 -0.33 2.12 1.43 0.93

HR3-MZZF 1.33 -2.99 -5.73 -0.33 2.12 1.43 0.93

Eq. (8.1) need not be applied. As a result, the models HR3-RZT and HR3-RZTmx are the

same and are combined under a single heading HR3-RZT in Tables 8.3 and 8.4.

The results in Tables 8.3-8.6 show that the error in the HR3 model without ZZ functionality

is around 1% for the non-sandwich laminates A-D with a/t ratios up to 20. For composite

laminate A, the errors of the HR3 and the HR models with ZZ functionality are essentially the

same, indicating that the ZZ effect for this [0/90] laminate is negligible. For the other three

composite laminates B-D, the HR3 model loses accuracy compared to the ZZ HR models when

a/t ≤ 10. For laminate B, the error in σ̄x is as great as 4.25% for a/t = 10 and then increases

to 8.05% for a/t = 5. However, as plies are blocked together into relatively thick groups in

laminates B-D, part of the error in HR3 is due to the ZZ effect that arises from the difference

in transverse shear moduli of the 0◦ and 90◦ layers. In practical engineering laminates, where

plies are regularly dispersed to prevent transverse matrix cracking, the accuracy of the HR3

model is expected to be similar to laminate A. Thus, for general engineering laminates, the

HR3 model can safely be considered to be applicable for composite, non-sandwich plates up to

a/t ratios of around 10. The increasing discrepancy for a/t = 5 is due to the increasing effects

of normal through-thickness deformation as previously observed for 1D beams in Figure 5.23

of Chapter 5. Thus, under these circumstances the HR formulation needs to be modified to

account for thickness stretch.

For sandwich plates E-H the accuracy of the HR3 model is inferior to the HR models with

ZZ functionality. Without the ZZ degree of freedom, the HR3 model cannot account for the fact

that layerwise differences in transverse shear moduli lead to changes in the z-wise slopes of the
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Table 8.4: Orthotropic laminate B: Percentage error in normalised bending deflection and 3D
stresses for various HR models and a/t ratios with respect to Pagano’s solution [69].

a/t Model |w̄0| ∨ |σ̄x| ∨ |σ̄y| ∨ |σ̄xy| ∨ |σ̄xz| ∨ |σ̄yz| σ̄z(zNl−1)

100

Pagano 0.004347 0.5393 0.1808 0.01068 39.47 8.282 -0.7407
HR3 (%) 0.01 0.05 -0.02 0.03 0.01 -0.01 0.00
HR3-RZT 0.01 0.00 -0.02 -0.01 0.00 -0.01 0.00

HR3-MZZF 0.01 0.00 -0.02 0.00 0.00 -0.01 0.00

50

Pagano 0.004451 0.5410 0.1846 0.01082 19.67 4.212 -0.7406
HR3 (%) 0.03 0.22 -0.07 0.13 0.03 -0.03 0.01
HR3-RZT 0.02 0.01 -0.07 0.01 0.01 -0.04 0.00

HR3-MZZF 0.03 0.01 -0.07 0.01 0.01 -0.04 0.00

20

Pagano 0.005162 0.5525 0.2101 0.01170 7.692 1.875 -0.7398
HR3 (%) 0.15 1.28 -0.39 0.76 0.17 -0.16 0.04
HR3-RZT 0.14 0.09 -0.27 0.40 0.04 -0.19 0.00

HR3-MZZF 0.14 0.07 -0.38 0.04 0.04 -0.19 0.01

10

Pagano 0.007524 0.5906 0.2882 0.01449 3.573 1.228 -0.7371
HR3 (%) 0.50 4.25 -1.17 2.37 0.64 -0.29 0.17
HR3-RZT 0.33 0.02 -1.09 0.91 0.11 -0.30 0.06

HR3-MZZF 0.42 0.08 -1.17 0.19 0.15 -0.44 0.05

5

Pagano 0.01528 0.7180 0.4784 0.02185 1.471 0.9557 -0.7264
HR3 (%) 1.28 8.05 -2.97 5.56 -0.35 0.25 0.76
HR3-RZT 0.97 -2.18 -3.03 1.07 0.41 -0.15 0.45

HR3-MZZF 0.97 -2.20 -3.05 1.03 0.39 -0.15 0.44

Table 8.5: Orthotropic laminate C: Percentage error in normalised bending deflection and 3D
stresses for various HR models and a/t ratios with respect to Pagano’s solution [69].

a/t Model |w̄0| ∨ |σ̄x| ∨ |σ̄y| ∨ |σ̄xy| ∨ |σ̄xz| ∨ |σ̄yz| σ̄z(zNl−1)

50

Pagano 0.005169 0.4887 0.4886 0.01259 14.02 14.02 -0.8599
HR3 (%) 0.03 -0.01 0.01 0.08 0.03 0.04 0.00
HR3-RZT 0.05 0.07 0.00 0.51 -0.05 -0.05 -0.04

HR3-RZTmx 0.03 -0.03 -0.01 0.02 0.00 0.00 0.00
HR3-MZZF 0.03 0.03 0.04 0.08 0.00 0.00 0.00

20

Pagano 0.005713 0.4982 0.4979 0.01305 5.567 5.567 -0.8590
HR3 (%) 0.16 -0.03 0.03 0.50 0.21 0.21 0.00
HR3-RZT 0.15 0.19 0.25 0.50 0.02 0.02 0.00

HR3-RZTmx 0.15 -0.15 -0.09 0.12 0.01 0.01 0.00
HR3-MZZF 0.15 0.18 0.25 0.50 0.02 0.02 0.00

10

Pagano 0.007617 0.5306 0.5309 0.01460 2.715 2.720 -0.8557
HR3 (%) 0.57 -0.02 -0.07 1.80 0.90 0.72 0.01
HR3-RZT 0.44 0.75 0.67 1.93 0.15 -0.02 0.04

HR3-RZTmx 0.44 -0.48 -0.53 0.46 0.13 -0.04 0.02
HR3-MZZF 0.44 0.74 0.69 1.75 0.15 -0.02 0.03

5

Pagano 0.01475 0.6384 0.6560 0.01985 1.245 1.264 -0.8430
HR3 (%) 1.73 0.77 -1.94 5.02 3.16 1.55 0.21
HR3-RZT 0.87 2.64 -0.28 4.98 0.81 -0.72 0.31

HR3-RZTmx 0.86 -0.95 -3.61 1.54 1.03 -0.54 0.25
HR3-MZZF 0.86 2.56 -0.20 4.73 0.83 -0.74 0.31
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Table 8.6: Orthotropic laminate D: Percentage error in normalised bending deflection and 3D
stresses for various HR models and a/t ratios with respect to Pagano’s solution [69].

a/t Model |w̄0| ∨ |σ̄x| ∨ |σ̄y| ∨ |σ̄xy| ∨ |σ̄xz| ∨ |σ̄yz| σ̄z(zNl−1)

50

Pagano 0.004418 0.5390 0.3271 0.01073 15.51 8.385 -0.8961
HR3 (%) 0.03 -0.05 -0.13 0.00 -0.07 0.01 0.00
HR3-RZT 0.03 -0.01 0.01 0.03 0.00 -0.01 0.00

HR3-RZTmx 0.03 -0.01 -0.04 0.01 0.00 -0.01 0.00
HR3-MZZF 0.03 -0.01 0.01 0.03 0.00 -0.01 0.00

20

Pagano 0.004964 0.5410 0.3463 0.01118 6.119 3.481 -0.8966
HR3 (%) 0.15 -0.31 -0.78 0.02 -0.44 0.09 0.00
HR3-RZT 0.14 -0.08 0.09 0.18 0.02 -0.06 0.00

HR3-RZTmx 0.14 -0.08 -0.23 0.05 0.02 -0.07 0.00
HR3-MZZF 0.14 -0.08 0.09 0.18 0.02 -0.06 0.00

10

Pagano 0.006861 0.5538 0.4007 0.01267 2.948 1.895 -0.8972
HR3 (%) 0.53 -1.17 -2.74 0.37 -1.74 0.48 0.03
HR3-RZT 0.41 -0.33 0.46 0.80 0.05 -0.15 0.01

HR3-RZTmx 0.41 -0.35 -0.73 0.30 0.05 -0.17 0.01
HR3-MZZF 0.41 -0.33 0.46 0.80 0.05 -0.15 0.01

5

Pagano 0.01397 0.6422 0.5286 0.01756 1.375 1.039 -0.8928
HR3 (%) 1.56 -5.40 -7.80 2.35 -6.63 2.35 0.20
HR3-RZT 0.75 -2.98 2.18 2.85 0.08 -0.08 0.18

HR3-RZTmx 0.76 -3.03 -1.57 1.28 0.07 -0.15 0.18
HR3-MZZF 0.76 -2.97 2.20 2.85 0.09 -0.07 0.18

Table 8.7: Orthotropic laminate E: Percentage error in normalised bending deflection and 3D
stresses for various HR models and a/t ratios with respect to Pagano’s solution [69].

a/t Model |w̄0| ∨ |σ̄x| ∨ |σ̄y| ∨ |σ̄xy| ∨ |σ̄xz| ∨ |σ̄yz| σ̄z(zNl−1)

50

Pagano 0.009121 1.099 0.9896 0.02175 9.249 8.437 -0.9852
HR3 (%) 0.01 -0.02 -0.03 -0.06 0.00 0.00 0.00
HR3-RZT 0.01 -0.01 0.00 0.00 0.00 0.00 0.00

HR3-RZTmx 0.01 -0.01 0.00 0.00 0.00 0.00 0.00
HR3-MZZF 0.01 0.00 0.00 -0.04 0.00 0.00 0.00

20

Pagano 0.01090 1.108 1.001 0.02217 3.693 3.380 -0.9852
HR3 (%) 0.06 -0.11 -0.16 -0.37 -0.01 -0.02 0.00
HR3-RZT 0.06 -0.04 0.02 -0.02 0.00 -0.01 0.00

HR3-RZTmx 0.06 -0.04 -0.02 -0.02 0.00 -0.01 0.00
HR3-MZZF 0.06 0.00 -0.01 -0.24 -0.01 -0.02 0.00

10

Pagano 0.01725 1.145 1.039 0.02367 1.839 1.694 -0.9850
HR3 (%) 0.14 -0.42 -0.58 -1.36 -0.06 -0.08 0.00
HR3-RZT 0.14 -0.16 0.10 -0.04 -0.01 -0.03 0.00

HR3-RZTmx 0.14 -0.16 -0.06 -0.04 -0.01 -0.02 0.00
HR3-MZZF 0.14 0.01 0.00 -0.87 -0.05 -0.07 0.00

5

Pagano 0.04251 1.296 1.174 0.02949 0.9118 0.8460 -0.9839
HR3 (%) 0.22 -1.28 -1.79 -4.06 -0.17 -0.19 0.01
HR3-RZT 0.18 -0.40 0.60 0.18 -0.09 -0.08 0.00

HR3-RZTmx 0.18 -0.37 0.02 0.17 -0.09 -0.07 0.00
HR3-MZZF 0.21 0.21 0.23 -2.46 -0.18 -0.21 0.01
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Table 8.8: Orthotropic laminate F: Percentage error in normalised bending deflection and 3D
stresses for various HR models and a/t ratios with respect to Pagano’s solution [69].

a/t Model |w̄0| ∨ |σ̄x| ∨ |σ̄y| ∨ |σ̄xy| ∨ |σ̄xz| ∨ |σ̄yz| σ̄z(zNl−1)

50

Pagano 0.01579 0.6563 0.8200 0.01847 8.519 10.67 -0.9607
HR3 (%) 0.14 -1.43 3.60 8.25 -0.05 -0.08 -0.04
HR3-RZT 0.01 0.02 -0.01 0.00 0.00 0.00 0.00

HR3-RZTmx 0.01 0.00 -0.01 0.00 0.00 0.00 0.00
HR3-MZZF 0.10 1.82 2.90 4.71 -0.12 -0.14 -0.01

20

Pagano 0.06419 1.181 1.433 0.04163 3.587 4.339 -0.9446
HR3 (%) 1.09 -4.04 12.34 21.66 -6.10 -1.36 -0.24
HR3-RZT 0.01 0.04 -0.07 -0.03 -0.07 0.01 0.00

HR3-RZTmx 0.01 -0.03 -0.07 -0.03 -0.07 0.01 0.00
HR3-MZZF 0.77 6.12 9.84 12.40 -1.87 -0.60 -0.07

10

Pagano 0.1843 2.489 2.951 0.09918 3.028 3.255 -0.9048
HR3 (%) 3.57 -4.40 20.03 29.92 -8.42 4.33 -0.92
HR3-RZT 0.01 -0.32 -0.58 -0.51 -0.51 -0.26 0.05

HR3-RZTmx 0.01 -0.43 -0.58 -0.51 -0.53 -0.26 0.04
HR3-MZZF 2.53 9.89 15.61 17.11 0.04 -0.17 -0.30

5

Pagano 0.3758 4.886 5.481 0.1948 2.648 2.706 -0.8383
HR3 (%) 7.70 -9.37 22.40 32.18 -8.51 7.50 -2.02
HR3-RZT 0.11 -4.59 -4.39 -4.15 -3.86 -3.46 0.74

HR3-RZTmx 0.11 -4.59 -4.38 -4.13 -3.89 -3.46 0.74
HR3-MZZF 5.43 4.76 16.19 17.19 -0.18 0.34 -0.44

Table 8.9: Orthotropic laminate G: Percentage error in normalised bending deflection and 3D
stresses for various HR models and a/t ratios with respect to Pagano’s solution [69].

a/t Model |w̄0| ∨ |σ̄x| ∨ |σ̄y| ∨ |σ̄xy| ∨ |σ̄xz| ∨ |σ̄yz| σ̄z(zNl−1)

50

Pagano 0.006048 0.2451 0.6576 0.01883 3.268 19.69 -0.8002
HR3 (%) 0.03 0.07 0.46 0.08 -0.15 0.08 0.01
HR3-RZT 0.03 -0.07 0.03 0.04 -0.08 0.01 0.00

HR3-RZTmx 0.03 -0.06 0.01 0.04 -0.08 0.01 0.00
HR3-MZZF 0.03 -0.04 0.19 0.16 -0.10 0.02 0.00

20

Pagano 0.008037 0.3159 0.6757 0.02216 1.605 7.357 -0.7997
HR3 (%) 0.24 0.54 2.64 0.50 -0.62 0.47 0.08
HR3-RZT 0.15 -0.30 0.16 0.21 -0.38 0.09 -0.01

HR3-RZTmx 0.15 -0.30 0.04 0.21 -0.39 0.09 -0.01
HR3-MZZF 0.16 -0.16 1.06 0.84 -0.40 0.14 0.01

10

Pagano 0.01384 0.4927 0.7746 0.03001 1.154 3.193 -0.7970
HR3 (%) 1.02 2.31 10.82 1.82 -0.87 -2.97 0.26
HR3-RZT 0.44 -0.68 0.91 0.72 -0.80 0.20 -0.02

HR3-RZTmx 0.44 -0.67 0.17 0.72 -0.81 0.26 -0.03
HR3-MZZF 0.52 -0.12 6.97 2.46 -0.64 -0.77 0.02

5

Pagano 0.02969 0.8067 1.081 0.04158 0.8103 1.649 -0.7829
HR3 (%) 2.74 7.49 21.13 5.28 -0.08 -6.96 0.81
HR3-RZT 0.95 -1.03 1.64 1.96 -0.95 1.54 0.10

HR3-RZTmx 0.95 -1.02 0.32 1.95 -0.96 1.56 0.10
HR3-MZZF 1.23 0.79 12.57 6.08 -0.20 0.35 0.22
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Table 8.10: Orthotropic laminate H: Percentage error in normalised bending deflection and
3D stresses for various HR models and a/t ratios with respect to Pagano’s solu-
tion [69].

a/t Model |w̄0| ∨ |σ̄x| ∨ |σ̄y| ∨ |σ̄xy| ∨ |σ̄xz| ∨ |σ̄yz| σ̄z(zNl−1)

50

Pagano 0.02123 1.153 1.190 0.02576 9.003 9.478 -0.9849
HR3 (%) 0.25 6.07 3.64 16.16 -0.50 -0.41 -0.05
HR3-RZT 0.00 0.01 0.02 0.00 0.00 0.00 0.00

HR3-RZTmx 0.00 0.00 0.01 0.01 0.00 0.00 0.00
HR3-MZZF 0.23 7.24 0.69 21.83 -0.52 -0.37 -0.06

20

Pagano 0.08638 1.599 1.643 0.05179 4.072 4.285 -0.9817
HR3 (%) 2.02 25.88 11.18 28.06 -8.98 -2.42 -0.27
HR3-RZT 0.00 0.01 0.04 0.05 0.03 0.01 0.00

HR3-RZTmx 0.00 -0.02 0.03 0.06 0.01 0.01 0.00
HR3-MZZF 1.79 30.62 9.49 44.21 -5.93 -3.73 -0.34

10

Pagano 0.2483 3.169 3.668 0.1281 3.723 3.792 -0.9738
HR3 (%) 6.71 29.18 20.13 26.56 -10.86 3.32 -0.91
HR3-RZT -0.06 0.51 0.43 0.45 0.46 0.42 0.01

HR3-RZTmx -0.06 0.42 0.42 0.48 0.42 0.42 0.01
HR3-MZZF 5.90 36.23 17.20 46.60 -5.84 -1.31 -1.14

5

Pagano 0.5129 6.188 6.565 0.2376 3.131 3.148 -0.9600
HR3 (%) 13.38 24.97 35.38 38.74 -1.89 16.38 -2.07
HR3-RZT -1.12 4.19 4.38 4.37 4.42 4.46 0.18

HR3-RZTmx -1.12 4.15 4.37 4.52 4.37 4.47 0.18
HR3-MZZF 11.50 31.84 30.70 61.03 3.37 9.34 -2.52

displacement and stress fields at layer interfaces, as described in Section 4.1.1. The pronounced

transverse orthotropy between the composite layers c and the honeycomb layers h increases the

ZZ effect in the sandwich plates E-H compared to composite laminates A-D. The errors in the

HR3 model are especially pronounced for laminates F and H which feature both the honeycomb

core h and the degraded core 0.01h. For these two laminates, the errors in the in-plane shear

stress metric σ̄xy is around 10% for the relatively thin a/t ratio of 50. For thicker laminates

with a/t = 10, this error increases to over 25%. However, for sandwich plates E and G, which

are only comprised of core h, the HR3 model maintains reasonable accuracy even for relatively

thick laminates of a/t = 10.

The HR3-RZT and HR3-RZTmx models are the most accurate of the HR formulations

investigated herein, with a maximum error of 1.93% (Laminate C) for a/t ratios up to 10.

When the thickness of the plate is further increased to a/t = 5, the HR-RZT models are

accurate to within 6% (Laminate A). As previously noted, the increasing inaccuracy for a/t = 5

arises because the effects of through-thickness normal deformation can no longer be ignored.

However, given the highly orthotropic material properties and “cube”-like nature of a plate

with a/t = 5, errors to within a few percent of a 3D elasticity solution are acceptable given

the reduced computational effort of the HR model compared to the alternative of full 3D FEM

analyses. Interestingly, for sandwich plates E and G both the HR3-RZT and HR3-RZTmx

models are accurate to within 2% for the thick configurations with a/t = 5. One possible

explanation for this behaviour is that the low transverse shear rigidity of the sandwich core
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(414 MPa) with respect to the transverse normal modulus (3.45 GPa) makes it energetically

favourable for the plate to deform via transverse shearing and ZZ mechanisms rather than by

transverse normal deformation, thereby reducing the relative influence of inaccuracies associated

with neglecting thickness stretch.

Based on these findings, the difference in accuracy between the HR3-RZT and HR3-RZTmx

models is benign. Gherlone [54] modified the definition of the RZT ZZ function based on

observations of the in-plane displacement fields but the present results suggest that the effect of

EWLs is less pronounced for stress fields. Stresses are based on the derivatives of displacements,

such that differences in the displacements of the HR3-RZT and HR3-RZTmx models do not

necessarily mean the displacement gradients are different. However, given that accurate internal

displacement fields are needed in many nonlinear failure analyses, such as cohesive zone models,

Gherlone’s [54] modified version of the RZT ZZ function is recommended for most accurate

results.

The other third-order ZZ model based on MZZF, HR3-MZZF, shows similar accuracy to the

HR models based on the RZT ZZ function for composite laminates A-D and sandwich plates E

and G. For composite laminates A-D, all seven metrics are accurate to within 2% for a/t ratios

up to 10. When the thickness of the plate is further increased to a/t = 5, the HR3-MZZF model

also suffers from a loss in accuracy to around 6% due to the thickness stretch effect. The first

discrepancy between the accuracy of the RZT- and MZZF-based HR models can be observed

for sandwich plates E and G. Although the HR3-MZZF model considerably improves on the

HR3 model, the maximum error in σ̄xy for laminate E at a/t = 10 is around 1% and increases

to 2.5% for a/t = 5, whereas the error for the RZT HR models is close to zero in both cases.

Furthermore, for sandwich plate G the error in σ̄y is close to 7% when a/t = 10, whereas the

HR3-RZTmx model remains within 2% even for the thicker configuration of a/t = 5.

For sandwich plates F and H, which are comprised of two different core materials h and 0.01h,

the errors in HR3-MZZF are more pronounced and are in fact comparable to the accuracy of

the HR3 model without ZZ functionality. For laminate F, the error in σ̄xy is around 5% for

the relatively thin configuration of a/t = 50 and increases to 17% for the moderately thick

configuration at a/t = 10. For laminate H, the errors are exacerbated with a 22% discrepancy

in σ̄xy for a/t = 50 which increases to 47% when a/t = 10. In comparison, the error in the

RZT-based HR models is less than 1% for both sandwich plates F and H up to t/a = 10.

These observations corroborate the findings in Section 5.2 that MZZF loses accuracy for

laminates comprised of three different constitutive materials. This is because MZZF does not

formally account for differences in the transverse shear moduli that underlie the mechanics of

the ZZ effect. It is perhaps appropriate to point out the caveat in the original paper by Toledano

and Murakami [168] that the “inclusion of the zig-zag shaped C0 function was motivated by the

displacement micro-structure of periodic laminated composites” and that “for general laminate

configurations, this periodicity is destroyed”, such that the “theory should be expected to break

down in these particular cases”. However, the author would like to emphasise that, in general,

MZZF provides accurate solutions for most commonly used laminates when employed in a third-

order HR theory. For sandwich plates with very flexible cores or laminates with pronounced

heterogeneity, the constitutive independence of MZZF can lead to large errors. Thus, the RZT
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ZZ function should be used for the most general straight-fibre laminations.

To qualitatively compare the accuracy of the four HR models, the through-thickness vari-

ations of all six stress metrics are plotted in Figures 8.2-8.9 for the characteristic length to

thickness ratio a/t = 10. The in-plane (x, y) locations of each z-wise plot are provided in the

stress metric definitions of Eq. (8.6) and are additionally indicated in the figure captions. The

observations previously made about the data in Tables 8.3-8.10 are corroborated in these figures,

namely:

1. The HR3-RZT and HR3-RZTmx through-thickness plots of the 3D stress fields are closely

matched to Pagano’s 3D elasticity solution for any type of stacking sequence investigated

herein. Most importantly, the transverse stress profiles are captured accurately from the

a priori model assumptions, precluding the need for stress recovery steps.

2. The difference in the 3D stress fields between HR3-RZT and HR3-RZTmx models is

benign.

3. The HR3 model generally only provides accurate 3D stress fields to within nominal errors

for composite laminates with a/t ≥ 10. In the case of sandwich plates or laminates that

feature materials with transverse shear properties that vary by orders of magnitude, a

ZZ term is generally recommended. However for practical engineering laminates most

commonly used in industry, the HR3 model provides the best trade-off between accuracy

and computational effort.

4. A third-order model with a ZZ term based on MZZF is accurate for most composite

laminates and stiff sandwich cores. In the case of more flexible or degraded sandwich

cores, laminates with two different types of cores or laminates with more than two unique

constitutive materials, the HR3-MZZF model leads to large errors.

5. For characteristic length to thickness ratios a/t ≤ 5, thickness stretch should be incor-

porated for generally accurate 3D stress fields. Thus, the assumed displacement field for

uz in Eq. (7.1) needs to be modified to account for a higher-order variation through the

thickness.

Note that the discrepancies between the two HR models HR3 and HR3-MZZF, and Pagano’s 3D

elasticity solution are most evident for sandwich laminates F and H comprised of two different

sandwich cores (see Figures 8.7 and Figures 8.9, respectively).

An interesting phenomenon is observed in the transverse shear stress profiles of laminates

F and H in Figures 8.7e and 8.7f, and Figures 8.9e and 8.9f, respectively. In these plots, a

reversal of the transverse shear stresses in the stiffer face layers is observed. This behaviour

only occurs for extreme cases of transverse orthotropy, i.e. when the transverse shear rigidity

of an inner layer is insufficient to support the peak transverse shear stress of the adjacent outer

layer. In essence, it is a load redistribution effect that arises because the transverse shear

force must remain constant for a unique loading configuration, i.e. the transverse shear stress

through-thickness distribution may change with layup, but the through-thickness integral of

this transverse shear stress is independent of layup.
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(f) Normalised transverse shear stress,
σ̄yz(a/2, 0, z)

Figure 8.2: Laminate A: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 10. The figures compare different implementations of
the HR model with Pagano’s elasticity solution.
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(b) Normalised lateral stress, σ̄y(a/2, b/2, z)

−1 −0.8 −0.6 −0.4 −0.2 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalised transverse normal stress, σ
z

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

 

 

Pagano
HR3
HR3−RZT
HR3−MZZF
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(f) Normalised transverse shear stress,
σ̄yz(a/2, 0, z)

Figure 8.3: Laminate B: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 10. The figures compare different implementations of
the HR model with Pagano’s elasticity solution.
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(d) Normalised in-plane shear stress,
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(f) Normalised transverse shear stress,
σ̄yz(a/2, 0, z)

Figure 8.4: Laminate C: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 10. The figures compare different implementations of
the HR model with Pagano’s elasticity solution.
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(f) Normalised transverse shear stress,
σ̄yz(a/2, 0, z)

Figure 8.5: Laminate D: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 10. The figures compare different implementations of
the HR model with Pagano’s elasticity solution.
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(b) Normalised lateral stress, σ̄y(a/2, b/2, z)
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σ̄z(a/2, b/2, z)
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(d) Normalised in-plane shear stress,
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(f) Normalised transverse shear stress,
σ̄yz(a/2, 0, z)

Figure 8.6: Laminate E: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 10. The figures compare different implementations of
the HR model with Pagano’s elasticity solution.
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(b) Normalised lateral stress, σ̄y(a/2, b/2, z)
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(c) Normalised transverse normal stress,
σ̄z(a/2, b/2, z)
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(d) Normalised in-plane shear stress,
σ̄xy(a/4, b/4, z)
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(e) Normalised transverse shear stress,
σ̄xz(0, b/2, z)
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(f) Normalised transverse shear stress,
σ̄yz(a/2, 0, z)

Figure 8.7: Laminate F: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 10. The figures compare different implementations of
the HR model with Pagano’s elasticity solution.
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(a) Normalised axial stress, σ̄x(a/2, b/2, z)
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(b) Normalised lateral stress, σ̄y(a/2, b/2, z)
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(c) Normalised transverse normal stress,
σ̄z(a/2, b/2, z)
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(d) Normalised in-plane shear stress,
σ̄xy(a/4, b/4, z)
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(e) Normalised transverse shear stress,
σ̄xz(0, b/2, z)
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(f) Normalised transverse shear stress,
σ̄yz(a/2, 0, z)

Figure 8.8: Laminate G: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 10. The figures compare different implementations of
the HR model with Pagano’s elasticity solution.
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(a) Normalised axial stress, σ̄x(a/2, b/2, z)
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(b) Normalised lateral stress, σ̄y(a/2, b/2, z)
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(c) Normalised transverse normal stress,
σ̄z(a/2, b/2, z)
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(d) Normalised in-plane shear stress,
σ̄xy(a/4, b/4, z)
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(e) Normalised transverse shear stress,
σ̄xz(0, b/2, z)
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(f) Normalised transverse shear stress,
σ̄yz(a/2, 0, z)

Figure 8.9: Laminate H: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 10. The figures compare different implementations of
the HR model with Pagano’s elasticity solution.
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8.1. 3D stress fields in straight-fibre laminates and sandwich plates

As the transverse shear stresses and in-plane stresses must equilibrate in Cauchy’s equilib-

rium equations, we can also observe that the corresponding plots of σ̄x, σ̄y and σ̄xy for sandwich

plates F and H change sign in some layers remote from the neutral axis. As a result, some

of the layers are both in tension and compression even when they are situated far away from

the neutral axis. This is especially evident for the symmetric sandwich plate F in Figures 8.7a

and 8.7b where the neutral axis is located on the midplane, i.e. the geometric centroid, but the

second layers from the top and bottom of the laminate are both in tension and compression.

Fundamentally this means that a cross-section of the plate no longer has one unique neutral

axis. The extreme case of transverse orthotropy occurs when the stiffer outer layers are bending

independently with fully reversed in-plane stress profiles within one layer, i.e. equal amounts

of tension and compression. Such a scenario occurs if the properties of the sandwich core are

negligible, such that they have “air-like” properties that cannot support any shear loading.

In conclusion, the results for the orthotropic plates presented in this section corroborate the

findings for orthotropic beams in Section 5.2. The third-order RZT-based model is the most

accurate of the formulations investigated herein for predicting bending deflections and 3D stress

fields from a priori model assumptions. This is because the RZT ZZ function is derived from

actual transverse shear material properties. The HR3-MZZF model provides similar accuracy

for composite laminates and sandwich plates with benign transverse anisotropy between the core

and face layers. For more pronounced anisotropy, the constitutive independence of MZZF can

lead to large errors, such that the HR3-RZTmx model is deemed to provide the most accurate

3D stress predictions for arbitrary straight-fibre laminations.

8.1.2 Benchmarking of 3D stresses in anisotropic laminates

8.1.2.1 Model implementation

As a second test, consider the multilayered square plate (a = b = 1 m) shown in Figure 8.10,

loaded on the top surface by a uniformly distributed pressure load P̂t = p0 and a uniform shear

traction in the x-direction T̂tx = t0. The plate is rigidly built-in along all four edges, such that

the three translations and three rotations are constrained through the entire cross-section. In

the HR model, the 3D continuum is compressed onto an equivalent single layer Ω coincident with

the midplane of the plate, depicted by the grey surface. This loading configuration represents

a more challenging test case than the orthotropic plate subjected to sinusoidal pressure loading

in the previous section as both the layer fibre orientations and the loading condition are more

general.

For the anisotropic laminates investigated herein, the third-order model HR3, and third-

order ZZ models HR3-RZT, HR3-RZTmx and HR3-MZZF are again implemented. As general

anisotropic laminates with off-axis plies exhibit extension/shear and bend/twist coupling, it

is more challenging to ascertain an analytical solution for the bending behaviour than for the

orthotropic laminates in Section 8.1.1.1. For general anisotropic laminates, Q̄16 6= 0 and Q̄26 6=
0, such that the simple double sine series solution previously implemented no longer exactly

satisfies the governing differential equations.

The general governing equations are therefore solved using the DQM introduced in Chap-

ter 2. The DQM is a versatile numerical discretisation technique that can be used to develop
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Figure 8.10: A composite plate loaded on the top surface by a uniformly distributed pressure
load and a uniform shear traction. All four edges are clamped. In the HR model,
the 3D continuum is compressed onto an equivalent single layer Ω coincident with
the midplane of the plate.

strong-form finite elements [150]. Using this technique, the relatively simple geometry of a

square, flat plate investigated here can be extended to the analysis of more complex geometries.

Following the description of DQM in Section 2.4, the governing differential equations are

converted into algebraic ones by replacing the differential operators in the governing field equa-

tions (7.61) and boundary conditions (7.62) with DQ weighting matrices that operate on all

functional unknowns within the domain. Thus, each differential operator is converted into a

linear weighted sum of the functional unknowns at predetermined grid points. In this work,

the non-uniform Chebychev-Gauss-Lobatto grid is used to discretise the planar domain of the

continuum x ∈ [0, 1] and y ∈ [0, 1] into a computational domain with Np grid points in either

direction. In the Chebychev-Gauss-Lobatto grid, the location of the grid points Xi in direction

X is given by

Xi =
1

2

(
1− cos

(i− 1)π

Np − 1

)
for i = 1, 2, . . . , Np. (8.7)

An important characteristic of the Chebychev-Gauss-Lobatto grid is that it results in the mini-

mum discretisation error, and by biasing the grid points towards the boundaries, avoids Runge’s

phenomenon1 associated with a uniform grid [149]. Based on an initial mesh convergence study,

a disretisation grid with 19 points in both the x- and y- directions was chosen (see Figure 8.11).

The chosen mesh size of 361 grid points provides a good trade-off between computational time

and accuracy of the results.

As shown in Eq. (2.35), the governing field equations (7.61) are discretised only for the

internal grid points, whereas the boundary conditions (7.62) are only applied on the boundary

points. Both sets of equations are written in terms of two unknown vectors: a vector of internal

1Runge’s phenomenon is a problem of oscillation between discretisation points which occurs when high-order
interpolation polynomials are used in a grid of uniformly spaced points. Thus, increasing the interpolation
order of the polynomial on a uniform grid spacing does not necessarily lead to better numerical solutions. The
Chebychev-Gauss-Lobatto grid, on the other hand, guarantees that the maximum error reduces with increasing
polynomial order.
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Figure 8.11: A non-uniform Chebychev-Gauss-Lobatto grid broken into a set of internal grid
points and a grid of boundary points. The governing field equations are only
applied at the internal points and the boundary conditions only at the boundary
points. Thus, the problem is substructured into four unique matrices and solved
for the field and boundary unknowns Ui and Ub, respectively.

field unknowns Ui and a vector of boundary unknowns Ub. This step of splitting the problem

into internal and boundary points, as well as into field and boundary equations, is depicted in

Figure 8.11. In this manner, the complete set of governing equations is substructured into four

unique matrices that allow the boundary unknowns to be eliminated,

Ui =
[
Kii −KibKbb

−1Kbi

]−1 ·
(
Fi −KibKbb

−1 · Fb
)

(8.8a)

Ub = Kbb
−1 · (Fb −Kbi · Ui) (8.8b)

where i refers to the internal field and b to the boundary. Thus, the final matrix inversion

problem in Eq. (8.8a) includes both the discretised field and boundary equations in one matrix,

which is solved for the vector of internal field unknowns Ui. The unknowns on the boundary Ub
are subsequently post-processed using the internal field variables in Eq. (8.8b).

It is important to point out that the stiffness matrices in Eq. (8.8) are densely populated,

such that certain pre-conditioning steps are recommended to reduce the condition number2 of

the associated matrices and to improve the accuracy of the matrix inversion. For variable-

stiffness laminates, the material properties change across the discretisation grid, such that

the magnitudes of the terms along the rows of the stiffness matrices may vary significantly.

Moreover, in the governing field equations and boundary conditions Eqs. (7.61)-(7.62), the

unknown stress resultants F and their in-plane derivatives are multiplied by compliance terms

s and shear correction factors η. These material property-dependent terms can be orders of

2In linear algebra, the condition number of a matrix is a metric to gauge how sensitive the solution to a
system of linear equations is to errors in the inputs. Thus, the condition number indicates the expected accuracy
of matrix inversion and of the solution. In general, the condition number κ of a matrix A is given by the
product of two norms κ(A) = ‖A−1‖ · ‖A‖, such that by definition κ(A) ≥ 1 with values near unity indicating
a well-conditioned matrix [176, p. 321].
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8.1. 3D stress fields in straight-fibre laminates and sandwich plates

magnitude smaller than the DQM weighting coefficients which appear in the strain vectors Leq
and Lbc (see Eqs. (7.64) and (7.65), respectively). Thus, elements along the rows of the stiffness

matrices, where each row corresponds to a unique equilibrium equation at a discretisation grid

point, can vary by orders of magnitude and lead to a large condition number. The use of the

compliance matrix s is an inherent numerical drawback of the chosen theoretical framework

in terms of solving the problem numerically using the DQM. This drawback can be partially

remedied by normalising each row Kr of the stiffness matrix, i.e. each equilibrium equation,

using the root-mean-square of the corresponding row,

Kn
r =

Kr√∑
c
K2
rc

(8.9)

where Krc are the c components of row Kr, and Kn
r is a normalised row.

Finally, the stiffness matrices in Eq. (8.8) are generally non-symmetric and can have zeros

on the leading diagonal. This occurs because the in-plane and bending equilibrium equations

Eqs. (7.61a) and (7.61b), as well as the enhanced constitutive equations Eqs. (7.61c), are discre-

tised into the same matrix due to the mixed displacement- and stress-based nature of the HR

model. To overcome the issue of zeros on the leading diagonal, the idea of damping, as proposed

in the works of Levenberg [171] and Marquardt [172], is used by replacing the zeros with small

terms of magnitude 10−10. Even though this method considerably reduces the condition number

of the stiffness matrix, the author is aware that damping the diagonal in this manner perturbs

the underlying numerical problem and more elegant solutions may be possible. One possible

solution is to discretise the plate into multiple DQM elements using the method proposed by

Tornabene et al. [150]. Such an approach is equivalent to a strong-form FEM and considerably

reduces the bandwidth of the matrices to improve the conditioning of the stiffness matrix.

As Pagano’s 3D elasticity solution [69] is only valid for simply supported orthotropic plates,

a 3D FEM model is used to benchmark the HR model results for anisotropic laminates. The

plate is modelled in the commercial software package Abaqus using a 3D body that is 1 m

long, 50 mm thick and 1 m wide. This plate, with characteristic length to thickness aspect

ratio of a/t = 20, is meshed with 784,080 linear C3D8R reduced integration brick elements with

enhanced hourglassing control, i.e. 80 elements through the thickness and 99 elements in both

in-plane dimensions. This choice was based on initial convergence criteria and on the constraint

of keeping the runtime at less than 12 hrs. In Section 8.1.2.2 laminates with up to eight unique

layers are analysed, such that each laminate features a minimum of ten elements per layer.

A pressure loading of P̂t = −100 kPa and a shear traction of T̂tx = −50 kPa are applied on

the top surface. Finally, all six degrees of freedom (three translations and three rotations) are

constrained at the four clamped edges throughout the entire plate cross-section. With 810,000

nodes and six degrees of freedom per node (4.86 million variables) the run-time on the local

desktop PC equipped with an Intel i7-2600S processor with 2.80 GHz and 8 GB of RAM is about

12 hrs, whereas the HR3 (15 variables) and HR3-RZT (19 variables) codes in Matlab have a

run-times of around 120 sec and 180 sec, respectively, at the chosen mesh size of 361 grid points

(5,415 and 6,859 variables, respectively). Thus, the HR model in Matlab reduces the number of

degrees of freedom by three orders of magnitude compared to the 3D FEM model in Abaqus.
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However, it must be noted that the runtime in Abaqus is highly dependent on the available

RAM and not the CPU speed. Therefore, the Abaqus model can be sped-up considerably if the

available RAM is increased.

8.1.2.2 Model validation

To test the general applicability of the HR formulation a variety of different symmetric and

non-symmetric composite laminates and sandwich plates are tested. The two materials used

throughout the analysis are as defined in Table 8.1 of Section 8.1.1.2. The stacking sequences

of different laminates including layer orientations, layer thickness and layer material codes are

summarised in Table 8.11. All laminates have a total thickness of 50 mm, i.e. a/t = 20.

Laminates I and J are general composite laminates with orthotropic and off-axis plies with

respect to the (x, y) coordinate system. Laminate I is a balanced, non-symmetric laminate that

exhibits in-plane/out-of-plane coupling and bend/twist coupling. Laminate J is an unbalanced,

symmetric laminate which exhibits both extension/shear and bend/twist coupling. Laminates K

and L extend the two coupling mechanisms mentioned above to a soft-core sandwich plate that

accentuates the ZZ effect. Thus, these two latter test cases represent non-classical laminates with

arbitrary fibre orientations and material heterogeneity, which intend to test the full capability

of the different HR models. Finally, laminate M is a quasi-isotropic composite laminate, which

is the most commonly used layup in industry.

Henceforth, all deflection and stress results are presented in normalised form. The same

definitions of the normalised metrics as previously defined in Eq. (8.6) are used but due to the

change in load case the factor p0 in the denominators of the metrics is replaced by the norm√
p2

0 + t20. Furthermore, the transverse shear stresses σxz and σyz are no longer computed at the

edges of the plate, as this represents a singularity in the 3D FEM model, but at the quarterspan.

Hence, the new definition of the stress metrics is given by

w̄0 =
E

(c)
2 t2

a2b2
√
p2

0 + t20

∫ t
2

− t
2

uz

(
a

2
,
b

2
, z

)
dz

σ̄x(z) =
t2

a2
√
p2

0 + t20
· σx

(
a

2
,
b

2
, z

)
, σ̄y(z) =

t2

b2
√
p2

0 + t20
· σy

(
a

2
,
b

2
, z

)
σ̄z(z) =

1√
p2

0 + t20
· σz

(
a

2
,
b

2
, z

)
, σ̄xy(z) =

t2

ab
√
p2

0 + t20
· σxy

(
a

4
,
b

4
, z

)
σ̄xz(z) =

1√
p2

0 + t20
· σxz

(
a

4
,
b

2
, z

)
, σ̄yz(z) =

1√
p2

0 + t20
· σyz

(
a

2
,
b

4
, z

)
.

(8.10)

The normalised deflection w̄0 for the HR models is compared against the normalised average

through-thickness deflection of the 3D model.

The accuracy of the different HR models in predicting the bending deflection of laminates

I-M, with characteristic length to thickness ratio a/t = 20, under the load case defined in

Figure 8.10 is presented in Table 8.12. The table summarises the percentage error in the

maximum normalised bending deflection |w̄0| to six decimal places with respect to the 3D FEM

result. The results show that the models with and without ZZ functionality predict the bending

deflection to within 1% of the 3D FEM solution, with the exception of a 2.59% error in the
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8.1. 3D stress fields in straight-fibre laminates and sandwich plates

Table 8.11: Analysed anisotropic stacking sequences. Subscripts indicate the repetition of a
property over the corresponding number of layers. Layer thicknesses stated as
ratios of total laminate thickness.

Laminate Thickness Ratio Material Stacking Sequence

I [0.254] [c4] [45/− 45/0/90]
J [0.25] [c5] [60/30/75/30/60]
K [0.1252/0.5/0.1252] [c2/h/c2] [45/− 45/0/0/90]
L [(1/12)3/0.5/(1/12)3] [c3/h/c3] [15/75/45/0/45/75/15]
M [0.1258] [c8] [45/− 45/90/0]s

Table 8.12: Anisotropic laminates I-M with a/t = 20: Percentage error in normalised bending
deflection |w̄0| to six decimal places for different HR models with respect to a 3D
FEM solution.

Lam. I Lam. J Lam. K Lam. L Lam. M

3D FEM 0.002525 0.002613 0.004148 0.004282 0.002260
HR3 (%) 0.18 0.23 0.04 0.20 0.10
HR3-RZT 0.06 2.59 -0.05 -0.38 -0.46

HR3-RZTmx 0.19 0.80 -0.09 -0.21 -0.46
HR3-MZZF 0.13 0.06 -0.08 0.15 0.10

HR3-RZT model for laminate J.

There are two possible explanations for the larger discrepancy of the HR3-RZT result for

laminate J. A possible first source of error is the numerical conditioning of the problem. However,

as shown in Table 8.13, the condition number κ of the DQM stiffness matrix K is of equal

magnitude as κ (K) of HR3-RZTmx, and in fact slightly less than the condition number for

HR3. In all cases the condition number is relatively high and as discussed in Section 8.1.2.1

future work should focus on strategies to reduce κ (K). One possible solution is to reduce

the bandwidth of the matrices, either by using localised DQ methods or by implementing

the strong-form DQ finite element method developed by Tornabene and co-workers [150]. An

alternative would be to transform the governing differential equations Eqs. (7.61) into the weak

form by using the generalised Galerkin method. One drawback of this latter approach is that

derivatives are not computed as accurately in C0 continuous finite elements as they are with DQ

weighting matrices. For the HR formulation presented herein, this would lead to a reduction

in computational accuracy of the transverse stresses as these are derived from the in-plane

derivatives of the stress resultants F .

A second source of error in the HR3-RZT model is that it does not account for EWLs. As

the error in the HR3 model for laminate J is small (0.23%) and the presence of EWLs only

Table 8.13: Laminate J: Condition number κ of the DQM stiffness matrix K that is inverted
to solved the structural problem.

HR3 HR3-RZT HR3-RZTmx HR3-MZZF

κ (K) 1.929× 1016 1.367× 1016 1.326× 1016 1.391× 1016
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8.1. 3D stress fields in straight-fibre laminates and sandwich plates

influences the definition of the ZZ function, which is not included in HR3, it is possible that

failing to account for EWLs artificially alters the stiffness of the structure. This explanation

is likely as the HR3-RZTmx model, which does account for EWLs, reduces the error by a

factor of three. Furthermore, the through-thickness plots of the two transverse shear stress

metrics σ̄xz and σ̄yz in Figure 8.13 show that the HR3-RZT solution does not exactly correlate

with the 3D FEM solution, whereas the other three HR models are almost coincident with the

benchmark. As the ZZ effect, and by extension the influence of EWLs, arises from differences

in the transverse shear moduli, the results suggest that the discrepancy in the HR3-RZT model

is due to a failure to account for EWLs. Thus, the modified RZT ZZ function implemented in

HR3-RZTmx is recommended for most accurate results.

To compare the accuracy of the HR 3D stress fields, the through-thickness variations of

all six stress metrics are plotted in Figures 8.12-8.16 for the characteristic length to thickness

ratio a/t = 20. The in-plane (x, y) locations of each z-wise plot are given in the stress metric

definitions of Eq. (8.10) and are also indicated in the figure captions.

For all laminates investigated herein, the HR3, HR3-RZTmx and HR3-MZZF model results

follow the 3D FEM solutions closely throughout the entire thickness. The HR3-RZT model

also correlates well with the 3D FEM solution for most laminates with the exception of the

transverse shear stresses for laminate J (Figure 8.13). As previously discussed, this inaccuracy

arises because the HR3-RZT model does not account for EWLs in the definition of the RZT ZZ

function, and is therefore less robust than the modified HR3-RZTmx model. Most importantly,

the through-thickness variations of all six stress fields closely follow the 3D FEM solution for

the quasi-isotropic laminate M (Figure 8.16), which is the most commonly used engineering

stacking sequence.

The through-thickness plots support the findings of Table 8.12 that both the HR3 model

without ZZ functionality and the HR3 ZZ models accurately predict the structural behaviour

of the anisotropic laminates. As shown in Figure 8.12, Figure 8.13 and Figure 8.16 the HR3

model remains accurate for all three anisotropic composite laminate I, J and M. In general,

most composite laminae have G13 < G23, such that the maximum and minimum values of

transverse shear stiffness occur for 0◦ and 90◦ plies, respectively. Thus, the HR3 model is

expected to be more accurate for general anisotropic than for orthotropic 0/90 laminates as the

layerwise differences in transverse shear moduli is reduced. However, for sandwich laminate L

the HR3 model is less accurate than the HR3-RZTmx model, with the discrepancies especially

pronounced for the in-plane shear stress plot in Figure 8.15d.

As for the orthotropic laminates investigated in Section 8.1.1.2, the HR3-RZTmx model most

consistently correlates with the 3D benchmark solution for the full range of anisotropic laminates

investigated. The only marked discrepancy between the 3D FEM solution and the HR3-RZTmx

model, and in fact all other HR models, is the in-plane shear stress σ̄xy for laminate J shown

in Figure 8.13d. To ascertain which of these stress fields, the 3D FEM or the HR solutions, is

the most accurate result, the residuals in Cauchy’s x- and y-direction equilibrium equations are

calculated. Only these two equilibrium equations explicitly contain the in-plane shear stress σxy.

Furthermore, as the 3D FEM and HR solutions of the two in-plane stresses σx and σy, and the

two transverse shear stresses σxz and σyz are well correlated, the model that satisfies Cauchy’s
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(b) Normalised lateral stress, σ̄y(a/2, b/2, z)

−0.8 −0.6 −0.4 −0.2 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalised transverse normal stress, σ
z

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

 

 

3D FEM
HR3
HR3−RZT
HR3−RZTmx
HR3−MZZF

(c) Normalised transverse normal stress,
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(d) Normalised in-plane shear stress,
σ̄xy(a/4, b/4, z)
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(f) Normalised transverse shear stress,
σ̄yz(a/2, b/4, z)

Figure 8.12: Laminate I: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 20. The figures compare different implementations of
the HR model with a 3D FEM model.
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(b) Normalised lateral stress, σ̄y(a/2, b/2, z)
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(c) Normalised transverse normal stress,
σ̄z(a/2, b/2, z)
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(d) Normalised in-plane shear stress,
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(f) Normalised transverse shear stress,
σ̄yz(a/2, b/4, z)

Figure 8.13: Laminate J: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 20. The figures compare different implementations of
the HR model with a 3D FEM model.
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(b) Normalised lateral stress, σ̄y(a/2, b/2, z)
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(c) Normalised transverse normal stress,
σ̄z(a/2, b/2, z)
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(d) Normalised in-plane shear stress,
σ̄xy(a/4, b/4, z)
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(f) Normalised transverse shear stress,
σ̄yz(a/2, b/4, z)

Figure 8.14: Laminate K: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 20. The figures compare different implementations of
the HR model with a 3D FEM model.
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(f) Normalised transverse shear stress,
σ̄yz(a/2, b/4, z)

Figure 8.15: Laminate L: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 20. The figures compare different implementations of
the HR model with a 3D FEM model.
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(b) Normalised lateral stress, σ̄y(a/2, b/2, z)
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(c) Normalised transverse normal stress,
σ̄z(a/2, b/2, z)
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(d) Normalised in-plane shear stress,
σ̄xy(a/4, b/4, z)
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(e) Normalised transverse shear stress,
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(f) Normalised transverse shear stress,
σ̄yz(a/2, b/4, z)

Figure 8.16: Laminate M: Through-thickness distribution of the 3D stress field at different
planar locations for a/t = 20. The figures compare different implementations of
the HR model with a 3D FEM model.
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Figure 8.17: Laminate J: Normalised x-direction and y-direction Cauchy residuals R̄x and R̄y,
respectively, for 3D FEM and HR models at (a/4, b/4, z) with a/t = 20.

equilibrium equations with the least residual is deemed to be the most accurate. Hence, the

two normalised residuals

R̄x

(
a

4
,
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4
, z

)
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are used to compare the accuracy of the in-plane shear stress field σxy of laminate J at(
a

4
,
b

4
, z

)
. The 3D FEM stress results are extracted from Abaqus using a Python script and

then post-processed in Matlab using the internal gradient function to calculate the derivatives

in Eq. (8.11).

Figure 8.17 compares the normalised residuals R̄x and R̄y of 3D FEM and the HR3 model

through the thickness of laminate J at

(
a

4
,
b

4
, z

)
. The plots show that the residuals for the

HR3 model are always less than the residual for the 3D FEM model. Figure 8.18 shows that

the residuals R̄x and R̄y for all four HR models are close to zero throughout the whole laminate

thickness. For the 3D FEM and HR models, the maximum residuals always occur at the ply

interfaces due to the relatively higher numerical error associated with calculating derivatives

at interval ends. The maximum error in the HR models at the ply interfaces is of order 10−1,

whereas the maximum 3D FEM residual is almost two orders of magnitude greater, i.e. of the

order of the applied loading norm
√
p2

0 + t20. In fact, remote from the layer interfaces the HR

model residuals are of order 10−6 and therefore negligibly small compared to the loading norm.

Thus, similar to the comments made in Section 6.4, even the detailed 3D FEM meshes

considered here, with more than ten elements per layer and multiple hours of runtime on a

high-performance computer, do not guarantee that Cauchy’s equilibrium equations are satisfied
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(b) Normalised y-direction Cauchy residual, R̄y

Figure 8.18: Laminate J: Normalised x-direction and y-direction Cauchy residuals R̄x and R̄y,
respectively, for all HR models at (a/4, b/4, z) with a/t = 20.

with negligible error. The results in Figure 8.18 suggest that the HR formulation 3D stress fields

equilibrate more accurately in Cauchy’s equations than the 3D FEM stresses. At the same time

the HR models reduce the number of variables by three orders of magnitude, thereby cutting

the computational runtime from multiple hours to 1-2 minutes.

8.2 3D stress fields in tow-steered laminates

In this section the laminates considered are generalised further by allowing the fibre paths

to vary continuously across the planform of the plate, i.e. with (x, y) location. Thus, these

laminates exhibit what is henceforth called full 3D heterogeneity as the material properties

can vary in both planar dimensions and through the thickness of the plate. These variable-

stiffness plates are manufactured by steering fibre tows in curvilinear paths using advanced

automated manufacturing methods, such as Advanced Fibre Placement (AFP) or Continuous

Tow Shearing (CTS). The aim of this section is to benchmark the 3D stress fields in these tow-

steered plates using the HR formulation and 3D FEM solutions, and to compare the relative

effects of transverse shear deformation of tow-steered plates and an equivalent quasi-isotropic

straight-fibre laminate.

8.2.1 Benchmarking of 3D stresses in tow-steered laminates

Consider a square plate of unit in-plane dimensions a = b = 1 m and t = 0.1 m thickness

(a/t = 10) as depicted graphically in Figure 8.19. The plate is comprised of Nl orthotropic, tow-

steered laminae of arbitrary thickness t(k) with the fibre orientation α(k)(x, y) varying smoothly

over the planform of the plate. Due to the variable-stiffness design of the curvilinear tow paths,

the material stiffness tensor C(k)(x, y) is a function of the in-plane location. As a result, the
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8.2. 3D stress fields in tow-steered laminates

complete laminated plate has varying stiffness properties in all three Cartesian coordinates.

z
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t
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O

Figure 8.19: A composite plate with tow-steered fibre paths, loaded on the top surface by
a uniformly distributed pressure load. All four edges are clamped. In the HR
model, the 3D continuum is compressed onto an equivalent single layer Ω coin-
cident with the midplane of the plate. For reference, the curvilinear fibre paths
have been superimposed onto this equivalent single layer.

The individual tow-steered layers can be arranged in any general fashion but are assumed

to be perfectly bonded, such that displacement and traction continuity at the interfaces is

guaranteed. The plate is rigidly built-in along all four edges and is loaded via a uniformly dis-

tributed pressure P̂t = p0 on the top surface. In reaction to the applied loading and constraining

boundary conditions, the plate is assumed to deform isothermally into a new static equilibrium

state.

In this work only linear fibre variations in one direction, i.e. prismatic variations, are

considered. Such tow-steered fibre paths are conveniently defined using the notation of Gürdal

and Olmedo [101],

α(x, y) = Φ〈T0|T1〉 (8.12)

where Φ denotes the rotation of the fibre path with respect to the global x-axis, and angles T0

and T1 are the fibre directions at the ply centre and at a characteristic length d from the centre,

respectively, with respect to the global rotation Φ. Thus, angle Φ also represents the direction

of fibre variation. To cover the whole planform of the plate the fibre trajectories are shifted

perpendicular to Φ.

Manufacturing techniques that steer fibres by in-plane bending, such as AFP, inevitably

cause gaps and overlaps when the reference path is shifted perpendicular to Φ. The CTS

technique, which steers fibre tows by in-plane shearing, allows the fibres to be tessellated without

any gaps or overlaps but induces an asymmetric variable thickness profile. Throughout this

analysis the presence of tow gaps, tow overlaps and thickness variations is neglected as the

main aim of the current work is to demonstrate the capability of modelling accurate 3D stresses

for an idealised flat plate with variable stiffness. However, the HR models are readily extended

to account for discrete or continuous thickness variations by locally changing the limits of
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8.2. 3D stress fields in tow-steered laminates

through-thickness integration and by taking account of the ensuing curvature of the neutral

axis [124].

The third-order model HR3 and third-order ZZ model HR3-MZZF are used to model the tow-

steered plates. The governing differential field equations (7.61) and boundary conditions (7.62)

are converted into algebraic equations using the DQM approach outlined in Section 8.1.2.1.

Thus, a system of algebraic equations in the form of Eqs. (8.8) is derived that is solved via

standard matrix inversion, taking into account the normalisation of the equilibrium equations

via Eq. (8.9).

As discussed in Section 6.3 regarding the analysis of variable-stiffness beams, the RZT

ZZ function leads to certain numerical conditioning problems for variable-stiffness laminates

when the governing equations are solved using the DQM. The RZT ZZ function varies over the

planform of a variable-stiffness plate as it is based on actual transverse shear material properties.

For a general fibre variation, the orthotropy in transverse shear moduli that drives the ZZ effect

can be finite in some areas of the plate but vanish locally if the layup is unidirectional or close

to unidirectional at a specific point. Under these circumstances the RZT ZZ function vanishes

and leads to numerical ill-conditioning in the matrix inversion s = S−1 (See Figure 6.5). For

finite element techniques that define constant fibre angles per element, this singularity in the

RZT ZZ function may not be a problem as the ZZ degree of freedom may be neglected locally

for the affected element. In the pseudo-spectral DQM implemented herein, this approach is not

possible as the fibre variations and all functional degrees of freedom vary smoothly across the

single DQM element used to discretise the plate.

Furthermore, it was found here that for variable-stiffness plates, the in-plane derivatives of

the RZT ZZ function can vary significantly over the planform and thus lead to local singularities

that ill-condition the DQ stiffness matrix. When using MZZF, this is not an issue as this ZZ

function is invariant with location (x, y). Hence, due to the numerical ill-conditioning issues

faced with the RZT ZZ function, the HR3-RZT and HR3-RZTmx models were not used for the

variable-stiffness panels analysed in this section.

The ill-conditioning problem due to the in-plane derivatives of the RZT ZZ function may

partially be remedied by using a local DQM approach, where only a small number of grid points

rather than the full domain is used to compute derivatives. Alternatively, the strong-form FEM

by Tornabene et al. [150] may provide a similar solutions. Further investigating the numerical

stability of the HR3-RZT model within a DQM framework should be the focus of future work.

Similar to Section 8.1.2.1, a 3D FEM model is used to benchmark the HR model results

for the tow-steered laminates. After the plate geometry is meshed, a Python script is used to

assign the pertinent material orientations to the elements depending on the exact location of the

element centroid in 3D Cartesian space. To achieve converged results, the in-plane mesh density

has to be increased to 149 elements in both in-plane directions to guarantee sufficiently smooth

fibre variations from the discrete element angles in the x- and y-directions. Combined with 80

elements through the thickness, the 3D body is thus meshed with 1,776,080 linear C3D8R

reduced integration brick elements with enhanced hourglassing control. A pressure loading of

P̂t = −100 kPa is applied on the top surface and all six degrees of freedom (three translations

and three rotations) are constrained at the four clamped edges for all nodes throughout the
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8.2. 3D stress fields in tow-steered laminates

Table 8.14: Analysed tow-steered stacking sequences. Subscripts indicate the repetition of a
property over the corresponding number of layers. Layer thicknesses stated as
ratios of total laminate thickness.

Laminate Thickness Ratio Material Stacking Sequence

VAT A [0.254] [IM74] [0± 〈0|90〉]s
VAT B [0.254] [IM74] [90± 〈0|90〉]s
VAT C [0.1258] [IM78] [0± 〈0|45〉/0± 〈90|45〉]s
VAT D [0.1258] [IM78] [90± 〈0|70〉/90± 〈90|20〉]s
VAT E [0.1258] [IM78] [90± 〈0|45〉/0± 〈45|0〉]s
VAT F [0.1252/0.5/0.1252] [IM72/h/IM72] [0± 〈90|0〉/0/0∓ 〈90|0〉]

VAT G [0.06254/0.5/0.06252] [IM74/h/IM74]
[90± 〈0|70〉/90± 〈45| − 20〉/0/

90∓ 〈45| − 20〉/90∓ 〈0|70〉]

Table 8.15: Tow-steered laminates VAT A-G with a/t = 10: Percentage error in normalised
bending deflection |w̄0| to six decimal places for different HR models with respect
to a 3D FEM solution.

VAT A VAT B VAT C VAT D VAT E VAT F VAT G

3D FEM .004690 .003279 .003857 .003265 .003427 .010392 .010388
HR3 (%) 0.58 0.24 0.15 0.22 0.18 3.72 1.94

HR3-MZZF 0.58 0.24 0.15 0.22 0.18 -0.25 1.48

entire plate cross-section.

The laminates investigated here are restricted to symmetrically laminated variable-stiffness

composites and sandwich plates and are tabulated in Table 8.14. These laminates are comprised

of the commonly used industrial material system IM7 8552 with E1 = 163 GPa, E2 = E3 =

12 GPa, G12 = 5 GPa, G13 = 4 GPa, G23 = 3.2 GPa, υ12 = υ13 = υ23 = 0.3, and the sandwich

core h previously defined in Table 8.1. Laminates A-D are tow-steered composite laminates,

whereas laminates E-F are sandwich plates with tow-steered face sheets. The laminates have

layers with fibre variations that vary explicitly in the x-direction (laminates A, C and F),

y-direction (laminates B, D and G) or both directions (laminate E).

All deflection and stress results are presented as normalised metrics. The same definitions

and spatial locations of the normalised metrics as previously defined in Eq. (8.10) is used.

Due to the change in load case, the factor t0 = 0 in the denominators of the metrics. The

accuracy of the different HR models in predicting the bending deflection of laminates VAT A-

VAT G, with characteristic length to thickness ratio a/t = 10 under the load case defined

in Figure 8.19, is presented in Table 8.15. The table summarises the percentage error in the

maximum normalised bending deflection |w̄0| to six decimal places with respect to the 3D FEM

result. The results show that the models with and without ZZ functionality predict the bending

deflection to within 1% of the 3D FEM solution for the variable-stiffness composites laminates

VAT A-VAT E. For the variable-stiffness sandwich plates VAT F and VAT G, the maximum

error in the HR3 model (3.72%) is greater than for the HR3-MZZF model. As was previously

shown for orthotropic and anisotropic straight-fibre laminates in Sections 8.1.1.2 and 8.1.2.2,

the inclusion of ZZ functionality is important for accurate modelling of sandwich panels.
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8.2. 3D stress fields in tow-steered laminates

Next, consider the through-thickness variations of all six stress metrics for laminates VAT A-

VAT G as plotted in Figures 8.20-8.26 for the characteristic length to thickness ratio a/t = 10.

The in-plane (x, y) locations of each z-wise plot are given in the stress metric definitions of

Eq. (8.10) and are also indicated in the figure captions. For the variable-stiffness composite

laminates VAT A-VAT E, both the HR3 and HR3-MZZF model results closely correlate the 3D

FEM solutions throughout the entire thickness.

For laminates VAT A and VAT B, small discrepancies are visible in the in-plane σ̄y stress

plot (Figures 8.20b and 8.21b) towards the top surface of the laminates. The 3D FEM solution

has a 6.2% higher magnitude of compressive stress on the top surface than tensile stress on

the bottom surface. This result suggests that the applied transverse pressure loading on the

top surface is locally affecting the in-plane stress field via Poisson’s coupling. Therefore, the

effect of transverse normal deformation on σ̄y is more pronounced for these two laminates (all

other laminates do not show this behaviour) and a higher-order expansion of the through-

thickness displacement uz in Eq. (7.1) is warranted. The discrepancy between the maximum

compressive stress σ̄y of 3D FEM and the HR models is around 5% for both VAT A-VAT B,

and may therefore not be worth the extra computational effort in an industrial setting given

the practical uncertainties around material properties and fibre angles.

The plots for laminates VAT F and VAT G in Figures 8.25-8.26 confirm the inferior accuracy

of the HR3 model in modelling sandwich panels previously observed for the deflection results

in Table 8.15. For laminate VAT F, both the in-plane stress plots for σ̄x (Figure 8.25a), σ̄y

(Figure 8.25b) and σ̄xy (Figure 8.25d), as well as the transverse shear plots for σ̄xz (Figure 8.25e)

and σ̄yz (Figure 8.25f) show inaccuracies of 5-16% in the HR3 results compared to 3D FEM. The

HR3-MZZF model follows the 3D FEM results more closely, with a maximum through-thickness

error ranging from 1.5% for σxz to 8% for σxy.

As previously observed in Section 8.1.2.2, the in-plane shear stresses σ̄xy are generally the

worst-matching plots for the laminates investigated. For example, consider the in-plane shear

stress distribution for VAT D in Figure 8.23d. The HR and 3D FEM results are closely matched

for four plies but show some differences for the central two layers and the two surface layers. The

other stress fields that equilibrate the in-plane shear stress in Cauchy’s x-direction equilibrium

equations, σx and σxz, and Cauchy’s y-direction equilibrium equations, σy and σyz, are closely

correlated. Thus, as introduced in Section 8.1.2.2, the extent to which the 3D FEM and HR

stress fields satisfy Cauchy’s x- and y-direction equilibrium equations is ascertained using a

metric capturing the general accuracy of the stress fields. Hence, the two normalised residuals

in Eq. (8.11) are used to compare the accuracy of the in-plane shear stress field σxy of laminate

D at

(
a

4
,
b

4
, z

)
.

Figure 8.27 compares the normalised residuals R̄x and R̄y of 3D FEM and the HR3 model

through the thickness of laminate D at

(
a

4
,
b

4
, z

)
. The residuals for the HR3 model are always

less than the residual in the 3D FEM model. Furthermore, Figure 8.28 shows that the residuals

R̄x and R̄y for both HR models are close to zero throughout the whole laminate thickness. The

maximum residual in the HR models at the ply interfaces is of order 10−2 and reduces to 10−6

away from the interfaces. The maximum 3D FEM residual at the ply interfaces is of the order
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(c) Normalised transverse normal stress,
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(d) Normalised in-plane shear stress,
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(f) Normalised transverse shear stress,
σ̄yz(a/2, b/4, z)

Figure 8.20: Laminate VAT A: Through-thickness distribution of the 3D stress field at differ-
ent planar locations for a/t = 10. The figures compare different implementations
of the HR model with a 3D FEM model.
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(b) Normalised lateral stress, σ̄y(a/2, b/2, z)
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(d) Normalised in-plane shear stress,
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(e) Normalised transverse shear stress,
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Figure 8.21: Laminate VAT B: Through-thickness distribution of the 3D stress field at differ-
ent planar locations for a/t = 10. The figures compare different implementations
of the HR model with a 3D FEM model.
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8.2. 3D stress fields in tow-steered laminates
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Figure 8.22: Laminate VAT C: Through-thickness distribution of the 3D stress field at differ-
ent planar locations for a/t = 10. The figures compare different implementations
of the HR model with a 3D FEM model.
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Figure 8.23: Laminate VAT D: Through-thickness distribution of the 3D stress field at differ-
ent planar locations for a/t = 10. The figures compare different implementations
of the HR model with a 3D FEM model.
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Figure 8.24: Laminate VAT E: Through-thickness distribution of the 3D stress field at differ-
ent planar locations for a/t = 10. The figures compare different implementations
of the HR model with a 3D FEM model.
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Figure 8.25: Laminate VAT F: Through-thickness distribution of the 3D stress field at differ-
ent planar locations for a/t = 10. The figures compare different implementations
of the HR model with a 3D FEM model.
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Figure 8.26: Laminate VAT G: Through-thickness distribution of the 3D stress field at differ-
ent planar locations for a/t = 10. The figures compare different implementations
of the HR model with a 3D FEM model.
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Figure 8.27: Laminate VAT D: Normalised x-direction and y-direction Cauchy residuals R̄x
and R̄y, respectively, for 3D FEM and HR models at (a/4, b/4, z) for a/t = 10.
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Figure 8.28: Laminate VAT D: Normalised x-direction and y-direction Cauchy residuals R̄x
and R̄y, respectively, for all HR models at (a/4, b/4, z) for a/t = 10.
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8.2. 3D stress fields in tow-steered laminates

of the applied loading norm p0, and even at layer midplane level the residual can be of order

10−2, and is four orders of magnitude greater than the HR models.

As a result, we observe that very detailed 3D FEM meshes with more than ten elements per

layer and multiple hours of runtime, do not guarantee that Cauchy’s equilibrium equations are

satisfied with negligible error. The HR formulation presented herein predicts 3D stress fields

that equilibrate more accurately than 3D FEM. At the same time, the HR models reduce the

number of variables by four orders of magnitude when analysing variable-stiffness laminates,

which leads to a reduction in run-time from 10 hours in Abaqus on a high-performance computer

with 128 GB of RAM to 1-2 minutes on a standard desktop PC running interpreted Matlab.

This combination of accuracy and computational expense makes the HR formulation an

attractive basis for industrial design tools. Two important reasons for the performance of the

HR models is their mixed displacement- and stress-based nature, which inherently satisfies

the equilibrium of stresses in a variational sense, compared to the displacement-based 3D FEM

model in Abaqus, which only guarantees the compatibility of displacements and strains. Second,

the strong-form DQM solution technique used herein allows more accurate computation of

derivatives and enforces both essential and natural boundary conditions explicitly.

8.2.2 Effect of transverse shear deformation on tow-steered plates

Finally, the relative effects of transverse shear deformation on tow-steered composite plates

are investigated for a range of characteristic length to thickness ratios a/t ∈ [100, 10], i.e. from

relatively thin to moderately thick plates. A variety of different tow-steered laminates are tested

including panels with fibre variations in the x- and y-directions only, as well as panels with fibre

variations in both directions. The loading configuration in Figure 8.19 is maintained with a

uniform pressure loading of magnitude P̂t = p0 applied to the top surface but the boundary

conditions are changed from clamped to simply supported. Thus, the midplane of the boundary

cross-section is assumed to be supported on a knife edge, such that translation and rotation of

the edges normal to the boundary is not constrained, whereas translation and rotation tangential

to the boundary is constrained.

To eliminate the influence of the ZZ effect, transverse shear anisotropy is removed by as-

suming material properties with equal transverse shear moduli. As a result, G13 = G23 and

any layer of arbitrary fibre orientation has the same transverse shear rigidity with no discon-

tinuity in transverse shear strains at layer interfaces. The material properties E1 = 150 GPa,

E2 = E3 = 10 GPa, G12 = 5 GPa, G13 = G12 = 4 GPa, υ12 = υ13 = υ23 = 0.3 are assumed

herein and are representative of a typical carbon-fibre reinforced plastic.

As the influence of the ZZ effect is eliminated using these material properties, the HR3

model is used throughout this section. The relative effect of transverse shear deformation is

gauged by comparing the bending deflection of this higher-order HR3 model to the results of a

CLA model which neglects the effects of transverse shear deformation. The bending deflection

is expressed in terms of the normalised parameter

w̄0 =
E1t

3

0.15p0a2b2
w0

(
a

2
,
b

2
, z

)
. (8.13)
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Figure 8.29: Ratio of normalised HR3 and CLA bending deflections for 12 different tow-
steered laminates at various thickness to characteristic length ratio t/a. The
curves indicate the increasing effect of transverse shear deformation on the global
behaviour with increasing t/a. The deflections ratios of the tow-steered lam-
inates are compared against a homogeneous, specially orthotropic, symmetric
and quasi-isotropic laminate denoted by QI.

For the CLA mode, this metric is invariant with the characteristic length to thickness ratio

a/t. Thus, the ratio between the normalised HR3 deflection and the normalised CLA deflection

w̄HR3
0 /w̄CLA0 gives an indication of the influence of transverse shear deformation for different

values of a/t. For a/t→∞, the ratio w̄HR3
0 /w̄CLA0 → 1.

The results of w̄HR3
0 /w̄CLA0 for a large set of tow-steered laminates at different values of

thickness to characteristic length ratio within the range t/a ∈ [.01, .1] are shown in Figure 8.29.

The bending deflection ratios follow a general parabolic trend with t/a, which confirms the

well-known relationship between the influence of transverse shear deformation and thickness of

a plate. Thus, increasing the thickness of the plate causes a parabolically increasing effect of

transverse shear deformation on the global behaviour of the plate.

Figure 8.29 also compares the tow-steered bending deflection ratios against that of a corre-

sponding homogeneous, specially orthotropic, symmetric and quasi-isotropic laminate denoted

by QI. Weaver [177] has shown that the minimum number of unidirectional layers required to

produce a homogeneous, specially orthotropic, symmetric and quasi-isotropic layup using only

the standard 0◦, 90◦, −45◦ and 45◦ layers is 48. A layup is defined to be homogeneous if the
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condition
Dij

Aij
=
t2

12
, j 6= 6

is satisfied where Aij and Dij are the classical membrane and bending rigidity matrices, respec-

tively. Thus, a homogeneous laminate obeys the classic ratio of membrane and bending stiffness

for isotropic plates. One possible layup that satisfies these requirements is a

[0/− 45/90/45/0/− 45/45/90/− 45/90/45/45/90/0/0/90/45/− 45/45/− 45/0/0/90/− 45]s .

stacking sequence, and this layup is henceforth be referred to as QI.

As the tow-steered laminates considered here feature a continuous range of fibre angles

across the plate of up to 90◦, they can be considered to be akin to a quasi-isotropic laminate.

Thus, the comparison against the QI laminate gives a measure of the effect of transverse shear

deformation on the two-steered panels compared to a realistic laminate of the same material

invariants. An interesting finding of Figure 8.29 is that all tow-steered panels investigated here

are affected more by transverse shear deformation than the QI laminate.

The effect of transverse shear deformation on the tow-steered laminates is most evident for

the maximum thickness of t/a = 0.1. Interestingly, the tow-steered laminates tend to agglom-

erate into two groups with the [0± 〈−15|60〉] laminate being an exception to this rule. In fact,

this laminate is affected most by transverse shear deformation for t/a = 0.1. However, from

pure visual investigation it is difficult to ascertain whether certain trends exist that correlate

the magnitude of transverse shear effects and tow-steering. This is not surprising given the

complexity of the structural behaviour due to the variable-stiffness nature of the laminates.

Thus, an interesting topic of future work would be to ascertain and quantify the relationship

between the effects of transverse shear deformation and variable-stiffness designs. Due to the

complexity of the problem, finding a closed-form solution for this relationship in terms of struc-

tural parameters may prove difficult. In this reagrd, statistical regression techniques could be

a promising first approach.

8.3 Conclusions

In this chapter, a comprehensive set of straight-fibre and variable-stiffness composite and sand-

wich beams was analysed under different bending load cases, boundary conditions and thickness

to characteristic length ratios using the 2D ESLT derived from the HR principle in Chapter 7.

The tested laminates include a variety of symmetric and non-symmetric, balanced and unbal-

anced, multimaterial sandwich plates as well as laminates with 3D heterogeneity, i.e. laminates

with material properties that vary in all three dimensions.

The orthotropic straight-fibre laminates were validated against 3D elasticity solutions, whereas

the anisotropic straight-fibre and variable-stiffness laminates were compared against 3D FEM

results. Overall, the through-thickness stress fields of the HR model show excellent correlation

with the 3D elasticity and 3D FEM results for characteristic length to thickness ratios of 10 : 1.

In some applications, e.g. wind turbine blade roots, where the characteristic length to thickness

ratio exceeds this value, transverse normal deformation needs to be accounted for. The accuracy
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of the HR model combined with the three-order-of-magnitude reduction in runtime compared

to high-fidelity 3D FEM models, are attractive qualities for industrial design tools.

The results in Section 8.1.1.2 show that the HR3-RZTmx model, i.e. using the RZT ZZ

function accounting for EWLs, correlates most accurately with Pagano’s 3D elasticity solution

for orthotropic straight-fibre laminates. Thus, Gherlone’s adaptation [54] of the RZT ZZ func-

tion is recommended to obtain the most accurate stress results. The HR model using MZZF

(HR3-MZZF) is also accurate for simple sandwich laminates comprised of stiff face layers and

a soft core. When two different cores or three unique material properties are used within a

laminate, MZZF results in large errors. This discrepancy occurs because MZZF is based on an

arbitrary ad hoc assumption of the ZZ slope changes between layers, and not on actual material

properties like the RZT ZZ function. For non-sandwich laminates, the HR3 model without

ZZ functionality gives similar accuracy to the HR3-RZTmx and HR3-MZZF models, and as a

result of the reduced computational expense, is the preferred option for typical non-sandwich

composite laminates used in engineering applications.

The anisotropic laminates in Section 8.1.2.2 are influenced less by the ZZ effect as the

layerwise differences in transverse shear moduli is reduced for combinations of off-axis layers

compared to orthotropic 0/90 laminates. Furthermore, the results for anisotropic, straight-fibre

laminates confirm that the HR3-RZTmx model predicts the 3D stress fields most accurately

for general multimaterial laminations, where layer material properties may vary by orders of

magnitude. However, for the variable-stiffness plates studied in Section 8.2.1, the RZT ZZ

function leads to ill-conditioning of the numerical DQM stiffness matrix due to local singularities

in the in-plane derivatives of the RZT ZZ function. Thus, within the present global DQM

framework, the HR3-RZTmx is not suited for robust analysis of variable-stiffness laminates.

To remedy this, a local DQM approach, where only small number of grid points rather than

the full domain is used to compute derivatives, should be tested. Alternatively, a strong-form

or weak-form FEM that assigns constant fibre-angles to each element within the discretisation

mesh would also remove the numerical ill-conditioning.

The results presented in Sections 8.1.2.2 and 8.2.1 corroborate earlier findings, that the HR

3D stress fields satisfy Cauchy’s 3D equilibrium equations more accurately, and at a fraction of

the computational cost, than high-fidelity 3D FEM models in Abaqus. This point highlights an

important advantage of the HR variational statement: it is computationally more efficient to

enforce the equilibrium of stresses explicitly in a variational sense than relying on the assumption

that finer discretisation meshes in displacement-based theories converge to a negligible residual.

The largest errors between the present HR plate model and the 3D FEM results for both

straight-fibre and tow-steered composites, occur for the in-plane shear stress σxy. To date, the

author has not been able to elucidate the origin of this bias towards the in-plane shear stress

accuracy, and this issue is to be investigated further in future work.

Finally, the results in Section 8.2.2 suggest that tow-steered panels are affected more by

transverse shear effects than a quasi-isotropic, homogeneous plate of the same material invari-

ants. Due to the complexity of the governing equations, it is difficult to ascertain closed-form

relations between the transverse shearing effects and tow-steering. An interesting topic of future

work would be to implement statistical regression techniques to quantify this relationship.
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Chapter 9

Conclusions and Future Work

The Carbon Fibre Industry Worldwide 2011-2020 [178] research report published in 2011 fore-

casts an optimistic outlook for the worldwide demand for carbon-fibre reinforced plastics within

the next decade. By 2020, the two biggest industrial applications, namely the automotive and

wind energy sectors, are projected to increase their demand for carbon fibre fivefold - from just

over 10 ktonnes in 2011 to over 50 ktonnes in 2020. Over the same period, the use of carbon

fibre composites in the aerospace sector is forecast to double. The two major drivers behind

these trends are an increasing focus on efficient lightweight structural design and the falling

costs of carbon fibre raw materials as increasing demand allows for better economies of scale [4].

Falling costs will not only increase utilisation of reinforced plastics in traditional industries

but also open the door for novel applications. In fact, the additive layer-by-layer manufacturing

process of multilayered composites is ideally suited for rapid prototyping in niche applications

and is starting to interface with research on 3D printing [179]. With this diversification to new

applications, laminated composites are likely to be used in a host of new service environments.

Furthermore, different applications benefit from different laminate configurations in terms of

layer material properties, stacking sequences and geometric configurations.

As introduced in Chapter 1, laminated composites feature a number of non-classical effects

which do not occur at all, or are not as pronounced in isotropic metallic or ceramic structures.

Examples of these include:

• Transverse shearing of the cross-section, which leads to reductions in the bending rigidity

and also induces higher-order distortions of the cross-section that concentrate stresses at

the surfaces of laminates. For fibre-reinforced plastics, the ratio of longitudinal to shear

modulus is approximately one order of magnitude greater than for isotropic materials

(Eiso/Giso = 2.6, E11/G13 ≈ 28). Second, as the orthotropy ratios λi = Eii/Gi3(t/Li)
2

for i = 1, 2 increase, stresses are increasingly channelled towards the surface.

• Transverse normal deformation, which compresses or extends the laminate in the stacking

direction, and is particularly important for soft core sandwiches and pronounced asym-

metric loading between the top and bottom surfaces. For isotropic materials Exx = Ezz,

whereas for composites E11/E33 ≈ 15, and hence thickness stretching is significantly in-

creased for the same surface pressure loading.

• The zig-zag effect, which is a particular multilayered phenomenon that results in non-

intuitive internal load redistributions towards layers with greater transverse shear and

transverse normal rigidity. For purely isotropic beams and plates, this phenomenon does

not exist, and this greatly reduces the complexity of the structural analysis.
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• Localised boundary layers towards singularities, which exacerbate all three of the previ-

ously mentioned effects and lead to stress gradients that are drivers of failure initiation. In

multilayered fibre-reinforced composites, higher-order moments that drive these boundary

layers are more pronounced when compared to isotropic materials due to the presence of

ZZ discontinuities and greater orthotropy ratios.

Hence, the reliable design of present and future multilayered structures requires accurate

tools for stress predictions that account for these non-classical effects.

9.1 Review of the research objectives

The objective of this dissertation is to develop a computationally efficient structural model

that accounts for the wide range of non-classical effects present in beam- and plate-like struc-

tures comprised of multiple layers of fibre-reinforced plastic, foam, honeycomb, or other high-

performance materials. Particular focus is placed on finding a favourable combination of an

accurate mathematical framework and an efficient numerical solver in order to make the de-

veloped model attractive for industrial design purposes. In this respect, a guiding principle

of the present work is to provide insight into the origins and drivers of non-classical effects in

multilayered structures, hence, to elucidate the underlying physics of the studied phenomena

in order to aid the intuition of structural engineers in mitigating some of the unique structural

effects that are characteristic of multilayered plates and beams.

A particular novelty of the work is that non-classical effects in both straight-fibre and tow-

steered laminates are investigated. Hence, the research aims to develop a robust modelling

framework for multilayered beams and plates with so-called 3D heterogeneity, i.e. the mate-

rial properties change discretely through the thickness due to the layered construction of the

laminates, and also vary continuously in-plane as a result of curvilinear fibre paths. Whereas

a number of works in the literature deal with global structural phenomena of tow-steered com-

posites laminates, such as vibration and buckling, relatively little work has been conducted on

localised higher-order effects in these laminates.

9.2 Research contributions

Overall, the work presented herein can be summarised by four overarching themes:

1. An in-depth literature review on 2D ESLTs for composite laminates, including an inves-

tigation of some of the shortcomings of popular displacement-based theories.

2. The mathematical derivation of a computationally efficient 2D modelling framework for

straight-fibre and tow-steered multilayered beams and plates using the HR mixed-variational

statement, and implemented within a meshless pseudo-spectral numerical solution scheme.

3. The application of the model to a wide range of laminated 3D heterogeneous beams and

plates under a variety of loading conditions. The results suggest that the model predicts

3D stress fields and local stress gradients towards boundaries to within a few percent of

3D elasticity and 3D finite element solutions.
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Research Contributions
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Figure 9.1: A hierarchy of the most significant research contributions presented in this disser-
tation. In the author’s opinion the HR formulation presented herein is well-suited
for accurate and computationally efficient stress analysis in industrial applications.

4. Using the derived model to study non-classical behaviour arising from in-plane and trans-

verse anisotropy in layered structures in order to provide physical insight into the governing

factors that drive higher-order effects, and to highlight some of the differences between

straight-fibre and tow-steered laminates.

The most significant findings of the present work, as summarised by the four themes above, are

addressed in more detail below. To accompany this, a flowchart of the major contributions of

each chapter is presented in Figure 9.1.

Displacement-based theories

Chapter 3 elucidated static inconsistencies in axiomatic displacement-based HOTs that include

the Kirchhoff rotations ∂w0/∂x and ∂w0/∂y in the assumptions of the in-plane displacement

fields ux and uy, respectively. Originally, these terms arose in the third-order theories of Am-

bartsumyan [35] and Reddy [34] as a means of enforcing the transverse shear strains to vanish at

the top and bottom surfaces. Throughout the decades since, their work has inspired many the-

ories that use the linear displacement field of CLA as a basis, enhanced by a through-thickness

shear strain shape function that vanishes on the surfaces (see Eq. (2.24) and Table 2.1). How-

ever, the presence of the Kirchhoff rotations in the displacement field of an HOT overconstrains

the model and leads to underpredictions of bending displacements for clamped boundary condi-

tions. Specifically, the Kirchhoff rotations induce essential boundary conditions δ∂w0/∂xi = 0

in the PVD derivation of the governing equations, which need to be enforced at clamped edges
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to mathematically constrain the boundary value problem. At clamped boundaries, the normal

rotation ∂w0/∂n is therefore forced to vanish, even though this condition is physically incorrect

as the plate can rotate at the clamped edge due to the presence of transverse shearing. Fur-

thermore, in these theories the transverse shear force derived from the constitutive equations

is zero at clamped edges, which contradicts the shear force and bending moment equilibrium

condition of classical beam theory.

It was shown that removing this artificial constraint, and writing the displacement field as

a generalised power series of the through-thickness coordinate z, does not cause any of these

static inconsistencies at clamped edges. In fact, if the order of the theory, i.e. the order of

expansion of the displacement fields, is sufficient to capture all pertinent higher-order effects

then the transverse shear stresses automatically vanish at the top and bottom surfaces. It was

found that the residual at the top and bottom surfaces could thus be used as a metric to gauge

the accuracy of the HOT.

The degree of higher-order shearing effects in bending can be captured using the nondimen-

sional parameters λx =
Exx
Gxz

(
t

Lx

)2

and λy =
Eyy
Gyz

(
t

Ly

)2

. This parameter λ can be used to

derive shear correction factors for FSDT that correct the transverse bending deflection results

to be consistent with a particular HOT. Hence, these transverse shear correction factors are tai-

lored to the actual geometry and material properties of the structure, and provide more accurate

bending deflection results than the classic value of 5/6, which is the value of an infinitesimally

thin beam or plate.

Derivation of Hellinger-Reissner model

As previously demonstrated by other authors [58, 59], the HR principle is a powerful mixed-

variational statement for deriving 2D ESLTs due to its ability to predict accurate 3D stress fields

and localised stress gradients towards boundaries. This characteristic stems from the fact that

Cauchy’s equilibrium equations are enforced explicitly in the variational statement. In purely

displacement-based theories derived from the PVD, the constitutive and kinematic relations are

satisfied a priori and the equilibrium of stresses is only enforced approximately. In other popular

mixed-variational statements for multilayered structures, such as RMVT, the equilibrium of

stresses is not enforced explicitly either. Hence, accurate transverse stress fields need to be

post-processed from the in-plane stresses of these theories. Recent work by Tessler [82] suggests

that the RMVT can be used to derive a theory that predicts accurate transverse shear stresses

from the underlying model assumptions if the transverse shear stress assumptions inherently

equilibrate with the in-plane stresses.

This same insight was used herein to derive a computationally efficient 2D ESLT for the

bending and stretching of flat beams and plates from the HR principle. The derivations of the

HR beam model in Chapter 4 and the HR plate model in Chapter 7 are based on the notion that

accurate transverse shear and normal stress fields can be derived by integrating the in-plane

stresses of a generalised, displacement-based HOT in Cauchy’s equilibrium equations. These

inherently equilibrated stress fields are thus written in terms of the same set of functional

unknowns that are chosen to be the set of higher-order stress resultants. The use of stress
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resultants is preferred over the use of displacement variables as this reduces the order of the

ensuing governing differential equations.

Using inherently equilibrated 3D stress assumptions in the HR variational statement has

a number of advantages. First, as a result of using the same set of functional unknowns

for all stress fields, the number of unknown variables in the theory is reduced compared to

generalised theories [58, 59]. Second, the higher-order 2D equivalent single-layer equilibrium

equations, which arise from the variation of the Lagrange multipliers enforcing Cauchy’s equi-

librium equations in the HR principle, are inherently satisfied and do not need to be solved.

Finally, the equilibrium of interfacial and surface tractions is mathematically guaranteed as

long as the classical membrane and bending equilibrium equations of CLA are enforced in the

variational statement. Hence, these three factors result in a contracted HR-type functional with

considerably fewer unknowns than the full generalised functional, namely the reference plane

translations (u0, v0, w0) and a set of higher-order membrane forces and bending moments F .

Most importantly, the static inconsistencies noted above do not occur at clamped edges.

Higher-order fidelity was introduced in the formulation by a Taylor series expansion of the

in-plane displacement and stress fields including the effect of ZZ moments. In fact, the govern-

ing equations were derived in a generalised framework, such that the order of the model can be

readily increased when implemented in a computer code. By increasing the order of the model,

and including or disregarding the local ZZ fidelity, the model is easily tailored to a variety of

different engineering laminates. In Chapter 4, the fundamental mechanics of the ZZ effect in

multilayered structures was shown to arise from differences in transverse shear strains at layer

interfaces that, by means of the kinematic relations, lead to discrete changes in the slope of the

in-plane displacement fields. The dual requirement of transverse shear stress and displacement

continuity at layer interfaces led to the notion of modelling the transverse shear mechanics of

a multilayered structure using a “springs-in-series” system. This approach resulted in the RZT

ZZ function proposed by Tessler et al. [77] and is based on the ratio of layerwise transverse shear

moduli to the equivalent transverse rigidity of the entire laminate. Throughout this work, this

constitutive ZZ approach was compared to a constitutively independent ZZ function, namely

MZZF, which is extensively used in the literature and only accounts for differences in layer

thicknesses.

Modelling of laminated 3D heterogeneous beams and plates

The application of the present HR formulation to the bending of flat beams and plates was

presented in Chapters 5, 6 and 8. Particular focus was placed on modelling a large set of

different stacking sequences and material systems to test the full capability of the model and

highlight shortcomings that require further refinement. Furthermore, a number of different

modelling orders were tested to assess the respective influence of different higher-order effects.

The results presented herein suggest that the HR model predicts 3D stress fields and local

stress gradients towards boundaries to within nominal errors compared to 3D elasticity and

3D FEM solutions for laminates with thickness to length ratios down to 5 : 1. Of particular

significance is that the derived HR formulation robustly captures 3D stress fields in multilayered

beams and plates with 3D heterogeneity at a fraction of the computational cost of 3D FEM
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models. For thicker laminates, transverse normal deformation may be significant, such that the

transverse displacement field needs to account for the occurrence of thickness stretch. However,

it should be noted that most engineering laminates used in industry do not exceed characteristic

length to thickness ratios of 5 : 1.

Indeed, the results show that a third-order HR model enhanced by the RZT ZZ function can

robustly model straight-fibre composites and sandwich panels with layer properties that vary

by multiple orders of magnitude. Previously, the consensus in the literature was that accurate

3D stress fields for such laminates can only be predicted using LWTs. As a 2D ESLT, the HR

model is not capable of enforcing unique boundary conditions for different layers. However, these

loading conditions are rare in practical engineering structures as the interface between different

components typically involves the entire cross-section. Hence, the present work questions the

necessity of using LWTs for practical engineering structures, and suggests that future work

should re-examine when these approaches are worth their computational effort.

Another important finding of the present work is that the HR models more accurately

obey Cauchy’s 3D equilibrium equations, and at significantly reduced computational cost, than

high-fidelity 3D FEM solutions from Abaqus. This means that local boundary layers towards

surfaces, interfacial traction conditions and local stress fields are modelled more robustly using

the HR formulation. This highlights an important advantage of the HR variational statement: it

is computationally more efficient to enforce the equilibrium of stresses explicitly in a variational

sense than to rely on the assumption that finer discretisation meshes in displacement-based

theories will converge to negligible residuals.

Overall, the results suggest that a third-order HR model is sufficient to account for most

higher-order effects that occur in practical engineering laminates used in industry. For these

laminates, ZZ effects are benign as thick blocks of unidirectional plies are typically forbidden

in engineering laminates to prevent issues with interlaminar cracking, and sandwich panels

typically use thin face sheets and core materials with sufficient transverse shear rigidity that

collectively minimise the ZZ effect. At the same time, the third-order HR model does account for

higher-order transverse shearing effects, such as “stress-channelling”, which occur for laminates

with pronounced in-plane to transverse shear modulus orthotropy, as for example, common

carbon fibre-reinforced composites.

However, the present work also shows that ZZ effects are accentuated towards clamped

boundaries, such that ZZ functionality is required to capture the localised stress gradients that

occur here. These boundary layer effects arise due to local variations in the higher-order stress

resultants, i.e. the relative significance of the higher-order effects increases towards the clamped

boundaries. In some niche sandwich applications where layerwise material properties can vary

by orders of magnitude, as is the case for laminated glass and solar panels, the ZZ effect cannot

be neglected. Furthermore, recent work by the present author shows that a ZZ variable can be

used to model delaminations in laminates via a cohesive law [180]. The basic premise behind

this approach is that the debonding process is akin to modelling a thin interfacial resin layer

with heavily degraded material properties, i.e. giving rise to a ZZ deformation field. Hence,

the ability to incorporate ZZ fidelity robustly in the HR formulation is a useful capability for

accurate stress predictions.
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In this respect, the current work has shown that the HR model based on the modified RZT

ZZ function [54], which accounts for the presence of EWLs, most robustly captures ZZ effects

in highly heterogeneous multilayered beams and plates. An HR model based on MZZF can

predict the three-dimensional stress fields to similar accuracy for simple sandwich laminates

comprised of stiff face layers and a soft core. For sandwich beams with very soft cores, or

laminates with more than two unique materials, the errors of a MZZF-based HR model can be

an order of magnitude greater than for RZT-based HR models. The reason for this is that the

RZT ZZ function incorporates differences in layerwise transverse shear moduli, i.e. accounts for

the underlying physics of the ZZ effect, whereas MZZF only incorporates differences in layer

thicknesses.

However, the results for variable-stiffness beams and plates in Chapters 6 and 8, respectively,

revealed numerical instabilities in the implementation of the HR-RZT formulation within the

DQM due to local singularities in the in-plane derivatives of the RZT ZZ function. The depen-

dence of the RZT ZZ function on transverse shear rigidities means that the ZZ effect can be

finite in some areas of the numerical domain and vanish in others. Discretisation points with

negligible ZZ effect lead to local singularities in the in-plane variations of the laminate compli-

ance terms, and these cause significant noise in the numerical calculation of derivatives and, in

turn, in the transverse shear and normal correction factors that underpin the HR model. The

MZZF-based HR model performs more robustly under these circumstances as this ZZ function

does not vary with in-plane location for variable-stiffness laminates.

Finally, the analysis of variable-stiffness laminates revealed some interesting non-classical

phenomena that do not occur for straight-fibre laminates. First, Section 6.5 showed that non-

intuitive stress fields induced towards the corners of straight-fibre laminates clamped along all

four edges, can occur in tow-steered laminates remote from any boundaries or singularities.

These localised stress fields are noteworthy as some parts of the cross-section are sheared in one

direction and other parts are sheared in the opposite direction. Thus, local boundary layers

in straight-fibre laminates that occur in the vicinity of strong 2D boundary conditions, can be

induced in 1D structures purely by varying the material properties. Second, the results in Sec-

tion 8.2.2 suggest that tow-steered panels are affected more by transverse shearing effects than

a quasi-isotropic, homogeneous plate of the same material properties. Finally, the HR model

was used to develop a new concept of tailoring the full 3D stress field throughout composite

laminates. The results in Section 6.6 show that variable-stiffness laminates can lead to a better

compromise between maximising bending stiffness and minimising the likelihood of delamina-

tions. This is achieved by facilitating smooth layup transitions between the central unsupported

portion of the structure, where high bending stiffness is required, and portions of the structure

subject to local stress concentrations.

9.3 Future work

Throughout the preceding chapters, certain shortcomings of the present HR formulation have

been highlighted. Suggestions for future work and improvement of the developed model are

therefore summarised below.
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The results in Chapter 5 and 8 showed that the effect of transverse normal deformation

on composite laminates and sandwich beams under classical loading conditions is important

for characteristic thickness to length ratios of about 5 : 1. To include these effects, the trans-

verse displacement assumption for uz in Eq. (4.9) for beams and Eq. (7.1) for plates, should

be expanded in a power series of the through-thickness displacement z. In this manner, the

thickness of the laminate is allowed to stretch and contract, such that pronounced asymmetric

loads, e.g. blast loads, laminates with one transversely flexible and one transversely rigid layer,

and very thick laminates can be modelled robustly. If ZZ effects due to layerwise differences

in transverse normal moduli are to be included, an additional ZZ term can also be added to

this displacement field. The derivation of the HR model based on the ensuing stress resultants

and equilibrated in-plane stresses, which now account for the Poisson’s effect from transverse

normal deformations, then follows in the same manner as outlined herein.

In this work, the HR formulation was derived for flat beams and plates. A valuable contri-

bution to the literature, and indeed for industrial stress analysis tools, would be an extension of

the formulation to polar and/or curvilinear coordinates. This model could be applied to predict

the transverse stresses in curved laminates, such as in corners of box- and C-spars on aircraft

wings, or the curved blade-flange connection region in T-stringers. In singly or doubly curved

laminates, high interlaminar stresses, i.e. transverse shear and transverse normal stresses, occur

when the laminate is subjected to an opening bending moment that acts to flatten the structure.

As a result, delamination is a common failure mode for curved laminates. Although simple ana-

lytical formulae for calculating these interlaminar stresses exist [181], recent industrial research

suggests that the application of these models is limited due to the underlying geometric, mate-

rial and boundary condition assumptions [182]. Even though these interlaminar stresses can be

analysed using 3D FEM models, their computational cost is high, and alternative methods are

needed. The development of a 1D HR model for arches and a 2D HR model for shells would

therefore be a valuable contribution to this field.

In general, an important next step is to generalise the application of the HR formulation

to a broader category of geometries. Two possible ways to achieve this are the development of

weak-form finite elements from the HR functional, or the extension of the present single-element

DQM to the finite-element DQM presented by Tornabene and coworkers [150]. The advantage

of this latter strong-form FEM is that both the essential and natural boundary conditions

are enforced, and interelement continuity of both displacements and stresses is guaranteed.

In classic weak-form displacement-based finite elements, the displacement fields are generally

chosen to be C0-continuous, and therefore very fine meshes are required to predict accurate

stress fields from the first derivatives of the displacements. Furthermore, the present work

has shown that the strong-form DQM is advantageous in that the governing equations are

solved at each discretisation point, rather than in an average sense over the whole domain, and

this leads to accurate predictions of localised boundary layers towards supports and laminate

surfaces. Hence, a strong-form FEM implementation would extend the applicability of the HR

formulation to more general geometries while maintaining the benefits of computing pointwise

accurate stress fields.

One interesting application of the HR model in a strong-form FEM framework would be the
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analysis of stress concentrations around cutouts. It is well known that cutouts lead to localised

stress concentrations around holes but also to the so-called “free-edge effect” in laminated

composites. In the latter, the mismatch of elastic material properties between two adjacent

layers at a free edge induces concentrated transverse shear and transverse normal stresses at

the interfaces of dissimilar layers. The driver of these transverse interlaminar effects are decaying

in-plane stresses towards the free edge, which are balanced with transverse shear and transverse

normal stress gradients. As Cauchy equilibrium of the 3D stress fields is enforced in the HR

formulation, a strong-form finite element model is likely to capture these effects robustly. Such a

model could then be used in an optimisation study, and build on the work of previous authors [99,

100], to alleviate the interlaminar stresses around the hole using tow steering.

A strong-form FEM code could also be used to investigate some of the numerical instabilities

of the present single-element DQ solution scheme. This single-element approach leads to densely

populated stiffness matrices as the derivative at a point within the discretisation domain is based

on all functional values within the domain. Second, the mixed-variational approach in terms of

displacement and stress resultant variables means that significant off-diagonal terms arise in the

stiffness matrices. Furthermore, the transverse shear correction factors of the HR formulation

are orders of magnitude smaller than the DQ differential weighting matrices. This means that

the enhanced constitutive equations for beams in Eq. (4.58c) and for plates in Eq. (7.61c), which

feature derivatives of unknown variables and shear correction factors multiplying derivatives of

unknown variables, have terms of significantly different orders of magnitude when discretised

using the DQM. The advantage of a FEM approach is that the bandwidth of the stiffness

matrix reduces with increasing number of elements as functional derivatives are only based on

the functional values in each element, rather than the entire domain. Hence, non-zero values

within the stiffness matrix are constrained close to the leading diagonal producing a sparser

matrix that is inverted with less numerical error.

Finally, an interesting topic of future study are the non-intuitive transverse shear stress

profiles that occur in tow-steered laminates introduced in Section 6.5. A pertinent question

worth answering is in what manner the opposite transverse shear strains in different layers can

be manipulated via stiffness variations. Are these effects only possible for laminates with a

certain number of layers? And could an optimisation study shed light on the extents to which

these effects can be maximised? Moreover, further research into the possible implications of

these effects are required. Current design studies on the buckling and postbuckling optimisation

of tow-steered laminates rarely account for transverse shear stresses as these effects are deemed

to be negligible for thin-walled structures. However, if non-intuitive through-thickness stresses,

such as these transverse shear stress reversals, are detrimental to the damage tolerance of

tow-steered laminates, and these effects occur remote from boundaries and singularities, then

changes in the design guidelines are needed to account for these effects. In this case, higher-order

modelling of non-classical effects is required throughout the entire structure, not just in areas

with local boundary features, such that computationally efficient 2D modelling techniques, as

presented in this work, will become critical for safe design.

Overall, the HR model derived herein has been shown to be a robust modelling framework

for straight-fibre and tow-steered beams and plates, and is well-suited for accurate and compu-
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tationally efficient stress analysis. In the author’s opinion, an extension of the model using finite

element techniques would present a compelling analysis tool for many industrial applications

and for future research projects on optimised lightweight structures.
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Appendices

Appendix A

This appendix supplements Chapter 4. Detailed derivations of the HR beam governing equa-

tions, and the definitions of pertinent transverse shear and transverse normal correction factors

are shown herein.

The contracted HR functional in Eq. (4.55) is split into separate components representing

the potential of axial stress Πσx , transverse shear stress Πτxz , transverse normal Πσz stress, the

potential of boundary tractions ΠΓ and the potential of the Lagrange multiplier constraints ΠL.

Substituting the pertinent expressions for stresses and strains into the functional of Eq. (4.55)

yields,

δΠ = δ (Πσx + Πτxz + Πσz + ΠL + ΠΓ) = 0

Πσx =
1

2

∫
V
σ>x εxdV =

1

2

∫
V
F>s>f (k)>

ε Q̄(k)f (k)
ε sFdV (A.1a)

Πτxz =
1

2

∫
V
τ>xzγxzdV =

1

2

∫
V

[
d

dx

{
c(k)sF

}
+ T̂b

]> 1

G
(k)
xz

[
d

dx

{
c(k)sF

}
+ T̂b

]
dV (A.1b)

Πσz =
1

2

∫
V
σ>z εzdV =

1

2

∫
V

[
d2

dx2

{
e(k)sF

}
− T̂b,x (z − z0) + P̂b

}>
·[

R
(k)
13 Q̄

(k)f (k)
ε sF +R

(k)
33

{
d2

dx2

(
e(k)sF

)
− T̂b,x (z − z0) + P̂b

}]
dV (A.1c)

ΠL =

∫
u0

(
N,x + T̂t − T̂b

)
dx+

∫
w0

(
M,xx + zNl T̂t,x − z0T̂b,x + P̂t − P̂b

)
dx (A.1d)

ΠΓ = −
∫
S1

(
σxû

(k)
x + τxzŵ0

)
dS −

∫
S2

{
u(k)
x (σx − σ̂x) + w0 (τxz − τ̂xz)

}
dS

= −
∫ [

σxf
(k)
u Û + τxzŵ0

]∣∣∣
C1

dz −
∫ {

f (k)
u U (σx − σ̂x) + w0 (τxz − τ̂xz)

}∣∣∣∣
C2

dz. (A.1e)

Performing the variations on the functionals in Eqs. (A.1a)-(A.1e) following the rules of the

calculus of variations results in the following expressions. For the potential of axial stress we

have,

δΠσx = δ

{
1

2

∫
F>s>

(∫
f (k)>
ε Q̄(k)f (k)

ε dz

)
sFdx

}
= δ

{
1

2

∫
F>s>SsFdx

}
= δ

{
1

2

∫
F>s>Fdx

}
=

∫
F>s>δFdx. (A.2)
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For the potential of transverse shear stress,

δΠτxz = δ

{
1

2

∫
V

[
d

dx

(
c(k)sF

)> 1

G
(k)
xz

d

dx

(
c(k)sF

)
+ 2

T̂b

G
(k)
xz

d
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(
c(k)sF

)
+

T̂ 2
b

G
(k)
xz

]
dV

}

=

∫
V

[
F>

{(
c(k)s

)>
,x

1

G
(k)
xz

(
c(k)s

)
,x

}
+ F>,x

{
s>c(k)> 1

G
(k)
xz

(
c(k)s

)
,x

}
+

T̂b

{
1

G
(k)
xz

(
c(k)s

)
,x

}]
δFdV +

∫
V

[
F>

{(
c(k)s

)>
,x

1

G
(k)
xz

c(k)s

}
+

F>,x

{
s>c(k)> 1

G
(k)
xz

c(k)s

}
+ T̂b

{
1

G
(k)
xz

c(k)s

}]
δF,xdV. (A.3)

Performing integration by parts on Eq. (A.3), and defining pertinent shear correction matrices

by integrating in the z-direction results in,

δΠτxz =
[
F>ηsbc> + F>,xηsbc

>
x + T̂bχ

sbc>
]∣∣∣
C1

δF +∫ [
F>ηs> + F>,xηs

>
x + F>,xxηs

>
xx + T̂bχ

s> + T̂b,xχ
s>
x

]
δFdx (A.4)

where all ηsα are OxO matrices of shear coefficients that automatically include pertinent shear

correction factors. Matrices χsα are Ox1 column vectors of correction factors that enforce

transverse shearing effects of the surface shear tractions. In each case the additional superscript

bc refers to coefficients used in the boundary conditions. The size of these matrices depends on

the chosen order of the model. For example a first-order shear theory has O = 2 with in-plane

stress resultant N and bending stress resultant M , i.e. F =
[
N M

]>
, whereas a third-order

zigzag theory has O = 6 with in-plane stress resultants N,O, bending stress resultants M,P

and zig-zag resultant Fφ,x , Fφ, i.e. F =
[
N M O P Fφ,x Fφ

]>
. The transposes of the

different shear coefficient matrices ηs
>
α and χs

>
α are defined as follows

ηs
>

=

∫ t/2

−t/2

−(c(k)s
)>
,xx

1

G
(k)
xz

c(k)s−
(
c(k)s

)>
,x

(
1

G
(k)
xz

)
,x

c(k)s

dz (A.5a)

ηs
>
x =

∫ t/2

−t/2

−s>c(k)>

(
1

G
(k)
xz

)
,x

c(k)s− 2
(
c(k)s

)>
,x

1

G
(k)
xz

c(k)s

dz (A.5b)

ηs
>
xx =

∫ t/2

−t/2

[
−s>c(k)> 1

G
(k)
xz

c(k)s

]
dz = −ηsbc>x (A.5c)

χs
>

=

∫ t/2

−t/2

−( 1

G
(k)
xz

)
,x

c(k)s

dz (A.5d)

χs
>
x =

∫ t/2

−t/2

[
− 1

G
(k)
xz

c(k)s

]
dz = −χsbc> (A.5e)

ηsbc
>

=

∫ t/2

−t/2

[(
c(k)s

)>
,x

1

G
(k)
xz

c(k)s

]
dz. (A.5f)

238



Appendix A.

For the potential of transverse normal stress we expand the parentheses in Eq. (A.1c) and

take the first variation to get

δΠσz =

∫ [
F>

(
e(k)s

)>
,xx
R

(k)
13 Q̄

(k)f (k)
ε s+ F>,x

(
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1
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(k)
33

(
e(k)s

)
,xx
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1
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1
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e(k)s

)
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2
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)
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(
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)
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R
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)
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]
δF,xdV+∫ [

1
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(k)
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(
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)
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(k)
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δF,xxdV. (A.6)

Next, the first and second derivatives are removed from the first variation of δF in Eq. (A.6)

by using integration by parts, and pertinent transverse normal correction matrices are defined

by integrating in the z-direction to give,

δΠσz =
[
F>ηnbc> + F>,xηnbc

>
x + F>,xxηnbc

>
xx + F>,xxxηnbc

>
xxx + T̂b,xχ
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]∣∣∣
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]∣∣∣
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]
δFdx (A.7)

where all ηnα areOxO matrices of transverse normal coefficients that include pertinent correction

factors. matrices χnα and ωnα areOx1 column vectors of correction factors that enforce transverse

normal effects of the surface shear and normal tractions, respectively. Correction matrices ρnbcα ,

γnbcx and µnbc only appear in the boundary condition associated with δF,x. The full set of

correction matrices in Eq. (A.7) is defined as follows,

ηn
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=
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dz (A.8a)
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ηn
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∫ t/2

−t/2

[(
e(k)s

)>
,x
R

(k)
13 Q̄

(k)f (k)
ε s+

(
f (k)
ε s

)>
,x
R

(k)
13 Q̄

(k)e(k)s+ s>f (k)>
ε

(
R

(k)
13 Q̄

(k)
)
,x
e(k)s+

4
(
e(k)s

)>
,xxx

R
(k)
33 e

(k)s+ 2
(
e(k)s

)>
,x
R

(k)
33,xxe

(k)s+ 6
(
e(k)s

)>
,xx
R

(k)
33,xe

(k)s

]
dz (A.8b)

ηn
>
xx =

∫ t/2

−t/2

[
1

2
s>e(k)>R

(k)
13 Q̄

(k)f (k)
ε s+

1

2
s>f (k)>

ε R
(k)
13 Q̄

(k)e(k)s+ 6
(
e(k)s

)>
,xx
R

(k)
33 e

(k)s+

6
(
e(k)s

)>
,x
R

(k)
33,xe

(k)s+ s>e(k)>R
(k)
33,xxe

(k)s

]
dz (A.8c)

ηn
>
xxx =

∫ t/2

−t/2

[
4
(
e(k)s

)>
,x
R

(k)
33 e

(k)s+ 2s>e(k)>R
(k)
33,xe

(k)s

]
dz (A.8d)
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The potential of the Lagrange multipliers is given by,
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δΠL =
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Finally, the potential of the work done by the applied loads on the boundary is,

δΠΓ = −


[
δFg> δFφ,x δFφ

]Û
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δF>Ûbc + δM,xŵ0

}∣∣∣
C1

−
{
δU>

(
F∗ − F̂∗

)
+ δw0

(
Q− Q̂

)}∣∣∣
C2

= −
{
δF>Ûbc + δF>,xŴ

}∣∣∣
C1

−
{
δU>

(
F∗ − F̂∗

)
+ δw0

(
Q− Q̂

)}∣∣∣
C2

. (A.10)

The integral expressions in equations (A.2), (A.4), (A.7), (A.9) and (A.10) combine to form

the governing field equations (4.58), whereas the terms evaluated on C1 and C2 combine to

form the governing boundary equations (4.59). These equations feature three column vectors

Λeq,Λbc1,Λbc2 that include the Lagrange multipliers u0, w0 and their derivatives. These are

given by,

Λeq =


−u0,x

w0,xx

0
...

 , Λbc1 =


u0

−w0,x

0
...

 , Λbc2 =


0

w0

0
...

 . (A.11)

The boundary displacement ŵ0 in Eq. (A.10) is contained in the vector Ŵ =
[
0 ŵ0 0 . . .

]>
.
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Appendix B

This appendix supplements Chapter 7. Detailed derivations of the HR plate governing

equations and the definitions of pertinent transverse shear correction factors are shown herein.

The HR functional in Eq. (7.60) is split into separate components representing the potential

of in-plane stresses Πσ, transverse shear stresses Πτ , the potential of the work done on the

boundary ΠΓ and the potential of the Lagrange multipliers ΠL. Substituting the pertinent

expressions for in-plane and transverse shear stresses Eq. (7.24) and Eq. (7.34), respectively,

into the functional of Eq. (7.60) yields

δΠ(u,F) = δ {Πσ(F) + Πτ (F) + ΠL(u,F) + ΠΓ(u,F)} = 0 (B.12)

where

Πσ =
1

2

∫
V
σ(k)>Q̄

(k)−1

σ(k)dV =
1

2

∫
V

(
Q̄

(k)
f (k)
ε sF

)>
Q̄

(k)−1
(
Q̄

(k)
f (k)
ε sF

)
dV (B.13a)

Πτ =
1

2

∫
V
τ (k)>G(k)−1

τ (k)dV =
1

2

∫
V

{
D>

(
c(k)sF

)
+ T̂b

}>
G(k)−1

{
D>

(
c(k)sF

)
+ T̂b

}
dV

(B.13b)

ΠL =

∫∫ {[
ux0 uy0

] (
D>N + T̂t − T̂b

)
+ w0

(
∇>Q+ P̂t − P̂b

)}
dydx (B.13c)

ΠΓ = −
∫
S1

(ûxtx + ûyty + ûztz) dS −
∫
S2

{
ux
(
tx − t̂x

)
+ uy

(
ty − t̂y

)
+ uz

(
tz − t̂z

)}
dS.

(B.13d)

Performing the variations on the functionals in Eqs. (B.13a)-(B.13d) following the rules of

the calculus of variations results in the following expressions. For the potential of in-plane

stresses,

δΠσ = δ

{
1

2

∫∫
F>s>

(∫
f (k)>
ε Q̄

(k)
f (k)
ε dz

)
sFdydx

}
= δ

{
1

2

∫∫
F>s>SsFdydx

}
= δ

{
1

2

∫∫
F>s>Fdydx

}
=

∫∫
F>s>δFdydx. (B.14)

For the potential of transverse shear stresses with q(k) = G(k)−1

Πτ =
1

2

∫
V

{
D>

(
c(k)sF

)
+ T̂b

}>
q(k)

{
D>

(
c(k)sF

)
+ T̂b

}
dV

δΠτ =

∫
V

{
D>

(
c(k)sF

)
+ T̂b

}>
q(k)

{
D>

(
c(k)sδF

)}
dV. (B.15)

By using the alternative definition of τ (k) in terms of the layerwise constitutive matrices

R(k), R(k)
x and R(k)

y of Eq. (7.37), i.e.

τ (k) =
(
D>R(k)

)
F +R(k)

x

∂F
∂x

+R(k)
y

∂F
∂y

+ T̂b, (B.16)
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the variation of the transverse shear functional in Eq. (B.15) now reads

δΠτ =

∫
V

[
τ (k)>q(k)

{(
D>R(k)

)
δF +R(k)

x δ
∂F
∂x

+R(k)
y δ

∂F
∂y

}]
dV. (B.17)

Expanding Eq. (B.17) and collecting common terms of δF results in

δΠτ =

∫
V

[
τ (k)>q(k)

(
D>R(k)

)
δF + τ (k)>q(k)R(k)

x δ
∂F
∂x

+ τ (k)>q(k)R(k)
y δ

∂F
∂y

]
dV. (B.18)

Next, by performing integration by parts on the terms δ
∂F
∂x

and δ
∂F
∂y

in Eq. (B.18),

δΠτ =

∫
V

[
τ (k)>q(k)

(
D>R(k)

)
− ∂

∂x

{
τ (k)>q(k)R(k)

x

}
− ∂

∂y

{
τ (k)>q(k)R(k)

y

}]
δFdV

+

∫
S1

[
nx

{
τ (k)>q(k)R(k)

x

}
+ ny

{
τ (k)>q(k)R(k)

y

}]
δFdS (B.19)

where nx and ny are the (x, y) components of the normal vector n to the boundary surface

S. Thus, Eq. (B.19) shows that the variation of the transverse shear stresses is a function of

the transverse shear stresses themselves multiplied by the layerwise constitutive matrices R(k),

R(k)
x and R(k)

y and their in-plane derivatives.

The boundary integral in Eq. (B.19) is simplified further by combining the normal vector

components nx and ny into a single matrix term, such that the constitutive R(k)
x and R(k)

y

matrices can be combined back into R(k). Hence,∫
S1

[
τ (k)>q(k)

{
nxR

(k)
x + nyR

(k)
y

}]
δFdS =

∫
S1

[
τ (k)>q(k)nDR

(k)
]
δFdS (B.20)

where

nD = nxIx + nyIy =

[
nx 0 ny

0 ny nx

]
. (B.21)

In the boundary integral of Eq. (B.20) the virtual stress resultants in the column vector δF
are defined in a global (x, y) reference system. For example, the first six terms of F are the

classical membrane forces N = (Nx, Ny, Nxy) and bending moments M = (Mx,My,Mxy). In

order to transform the stress resultants in F from the global coordinate system (x, y, z) to the

local normal-tangential coordinate system (n, s, z) of the boundary surface, the transformation

matrix T is applied,
Fx

Fy

Fxy

 = T


Fn

Fs

Fns

 where T =

 n2
x n2

y −2nxny

n2
y n2

x 2nxny

nxny −nxny n2
x − n2

y

 . (B.22)

After converting all stress resultants to the local normal-tangential coordinate system (n, s, z),

the orthogonality condition of n and s is used to conclude that the stress resultants Fs can do

no work normal to the boundary surface. Thus, the second column of T can be disregarded in
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the stress resultant transformation of δF , such that

T n =

 n2
x −2nxny

n2
y 2nxny

nxny n2
x − n2

y

 . (B.23)

The complete column vector of all stress resultants F = (Nx, Ny, Nxy,Mx,My,Mxy, . . . ) is

transformed into the boundary stress resultant Fbc = (Nn, Nns,Mn,Mns, . . . ) as follows

F = T bcFbc where T bc = IO ⊗ T n (B.24)

where ⊗ is the Kronecker matrix product1 and IO is the O×O identity matrix. Thus, Eq. (B.19)

is rewritten to accommodate the new boundary integral,

δΠτ =

∫
V

[
τ (k)>q(k)

(
D>R(k)

)
− ∂

∂x

{
τ (k)>q(k)R(k)

x

}
− ∂

∂y

{
τ (k)>q(k)R(k)

y

}]
δFdV +∫

S1

[
τ (k)>q(k)nDR

(k)T bc

]
δFbcdS. (B.25)

Finally, all that is left is to expand the derivatives in Eq. (B.25) using the differential product

rule and integrate in the z-direction to collapse the terms onto an equivalent single layer. Thus,

by defining pertinent shear correction matrices in the final z-wise integration step, we arrive at

δΠτ =

∫∫ [
ηF + ηx

∂F
∂x

+ ηy
∂F
∂y

+ ηxx
∂2F
∂x2

+ ηxy
∂2F
∂x∂y

+ ηyy
∂2F
∂2y

+ χT̂b + χx
∂T̂b
∂x

+χy
∂T̂b
∂y

]>
δFdydx+

∫
C1

[
ηbcF + ηbcx

∂F
∂x

+ ηbcy
∂F
∂y

+ χbcT̂b

]>
δFbcds (B.26)

where all ηα are O × O matrices of shear coefficients that automatically include pertinent

shear correction factors. The O × 2 matrices χα are correction factors that enforce transverse

shearing effects of the surface shear tractions. In each case the additional superscript bc refers to

coefficients used in the boundary conditions. The size of these matrices depends on the chosen

order of the model O. For example, a first-order shear theory has O = 6 with membrane forces

N and bending moments M, i.e. F = (Nx, Ny, Nxy,Mx,My,Mxy).

The transposes of the shear correction matrices η>α and χ>α in the double integral are

η> =

Nl∑
k=1

∫ zk

zk−1

[(
D>R(k)

)>{
q(k)

(
D>R(k)

)
− ∂

∂x

(
q(k)R(k)

x

)
− ∂

∂y

(
q(k)R(k)

y

)}
− ∂

∂x

(
D>R(k)

)>
q(k)R(k)

x −
∂

∂y

(
D>R(k)

)>
q(k)R(k)

y

]
dz (B.27a)

η>x =

Nl∑
k=1

∫ zk

zk−1

[
R(k)>
x

{
q(k)

(
D>R(k)

)
− ∂

∂x

(
q(k)R(k)

x

)
− ∂

∂y

(
q(k)R(k)

y

)}
1Defined on page 168.
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−
(
D>R(k)

)>
q(k)R(k)

x −
∂R

(k)>
x

∂x
q(k)R(k)

x −
∂R

(k)>
x

∂y
q(k)R(k)

y

]
dz (B.27b)

η>y =

Nl∑
k=1

∫ zk

zk−1

[
R(k)>
y

{
q(k)

(
D>R(k)

)
− ∂

∂x

(
q(k)R(k)

x

)
− ∂

∂y

(
q(k)R(k)

y

)}

−
(
D>R(k)

)>
q(k)R(k)

y −
∂R

(k)>
y

∂x
q(k)R(k)

x −
∂R

(k)>
y

∂y
q(k)R(k)

y

]
dz (B.27c)

η>xx = −
Nl∑
k=1

∫ zk

zk−1

R(k)>
x q(k)R(k)

x dz (B.27d)

η>yy = −
Nl∑
k=1

∫ zk

zk−1

R(k)>
y q(k)R(k)

y dz (B.27e)

η>xy = −
Nl∑
k=1

∫ zk

zk−1

[
R(k)>
x q(k)R(k)

y +R(k)>
y q(k)R(k)

x

]
dz (B.27f)

χ> =

Nl∑
k=1

∫ zk

zk−1

[
q(k)

(
D>R(k)

)
− ∂

∂x

(
q(k)R(k)

x

)
− ∂

∂y

(
q(k)R(k)

y

)]
dz (B.27g)

χ>x = −
Nl∑
k=1

∫ zk

zk−1

q(k)R(k)
x dz (B.27h)

χ>y = −
Nl∑
k=1

∫ zk

zk−1

q(k)R(k)
y dz (B.27i)

and in the boundary integral ηbc
>

α and χbc
>

are given by

ηbc
>

=

Nl∑
k=1

∫ zk

zk−1

(
D>R(k)

)>
q(k)nDR

(k)T bcdz (B.28a)

ηbc
>

x =

Nl∑
k=1

∫ zk

zk−1

R(k)>
x q(k)nDR

(k)T bcdz (B.28b)

ηbc
>

y =

Nl∑
k=1

∫ zk

zk−1

R(k)>
y q(k)nDR

(k)T bcdz (B.28c)

χbc
>

=

Nl∑
k=1

∫ zk

zk−1

q(k)nDR
(k)T bcdz. (B.28d)

The expressions in Eq. (B.27) and (B.28) above are valid for any multilayered plate comprised of

linear elastic anisotropic laminae. Thus, the expressions are applicable to straight-fibre and tow-

steered composites, as well as for isotropic single-layer plates or multilayered ceramic structures,

such as laminated glass. For plates with material properties invariant of the planar (x, y)

directions, the expressions in Eq. (B.27) and (B.28) simplify considerably as any terms involving

D>, ∂/∂x, ∂/∂y vanish. Thus, for straight-fibre laminates η> = η>x = η>y = χ> = ηbc
>

= 0.
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The potential of the Lagrange multipliers Eq. (B.13c) is given by

ΠL =

∫∫ {[
ux0 uy0

] (
D>N + T̂t − T̂b

)
+ w0

(
∇>Q+ P̂t − P̂b

)}
dydx. (B.29)

An expression for the transverse shear stress resultants Q = (Qxz, Qyz) in terms of bending mo-

mentsM is found by using the bending moment equilibrium from Cauchy’s in-plane equilibrium

equations. Hence,

∫ t/2

−t/2
z

(
D>σ(k) +

∂τ (k)

∂z

)
dz = D>M+

∫ t/2

−t/2
z
∂τ (k)

∂z
dz = 0

and through integration by parts,

D>M+
[
zτ (k)

]zNl
z0
−
∫ t/2

−t/2
τ (k)dz = D>M+

[
zNlτ

(Nl)(zNl)− z0τ
(1)(z0)

]
−Q = 0

∴Q = D>M+
(
zNl T̂t − z0T̂b

)
. (B.30)

Note, that Eq. (B.30) is the expression seen in the third and fourth equations of Eq. (7.52).

Substituting the expression for Q from Eq. (B.30) into Eq. (B.29) results in

ΠL =

∫∫ [
ux0 uy0

] (
D>N + T̂t − T̂b

)
dydx +∫∫

w0

(
∇>D>M+∇>

(
zNl T̂t − z0T̂b

)
+ P̂t − P̂b

)
dydx. (B.31)

Now, taking the first variation of Eq. (B.31),

δΠL =

∫∫ {[
δux0 δuy0

] (
D>N + T̂t − T̂b

)
+
[
ux0 uy0

] (
D>δN

)}
dydx +∫∫ {

δw0

(
∇>D>M+∇>

(
zNl T̂t − z0T̂b

)
+ P̂t − P̂b

)
+ w0

(
∇>D>δM

)}
dydx (B.32)

and then integrating the expressions involving derivatives of δN and δM by parts we have

δΠL =

∫∫ [δux0 δuy0

] (
D>N + T̂t − T̂b

)
−

(
D

{
ux0

uy0

})>
δN

dydx +

∫∫ {
δw0

(
∇>D>M+∇>

(
zNl T̂t − z0T̂b

)
+ P̂t − P̂b

)
+
(
∇>D>w0

)
δM

}
dydx +∫

C1

[
un0 us0

]
δNbcds−

∫
C1

(∇nsw0)> δMbcds+

∫
C1

w0δQnzds (B.33)

where ∇ns =

(
∂

∂n
,
∂

∂s

)
, Nbc = (Nn, Nns), Mbc = (Mn,Mns), Qnz is the transverse shear

force acting on the normal boundary surface, and two new variables un0 = nxux0 + nyuy0 and

us0 = −nyux0 + nxuy0 have been introduced to capture the displacement Lagrange multipliers
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on the boundary. In general, this transformation follows the rule{
êx

êy

}
=

[
nx −ny
ny nx

]{
ên

ês

}
(B.34)

where ê is a unit vector.

Finally, the first variation of the work done on the boundary surface S of Eq. (B.13d) has

to be evaluated. Thus,

δΠΓ = −
∫
S1

(ûxδtx + ûyδty + ûzδtz) dS−
∫
S2

{
δux

(
tx − t̂x

)
+ δuy

(
ty − t̂y

)
+ δuz

(
tz − t̂z

)}
dS.

(B.35)

When the displacements are transformed from (ûx, ûy, ûz) to (ûn, ûs, ûz) and tractions trans-

fomed from (tx, ty, tz) = (σnx, σny, σnz) to (tn, ts, tz) = (σnn, σns, σnz) using Eq. (B.34), the first

variation of the work done on the boundary surface Eq. (B.35) reads

δΠΓ = −
∫
S1

(ûnδtn + ûsδts + ûzδtz) dS−
∫
S2

{
δun

(
tn − t̂n

)
+ δus

(
ts − t̂s

)
+ δuz

(
tz − t̂z

)}
dS.

(B.36)

Following the generalised displacement field for ux and uy of Eq. (7.1), the normal-tangential

displacements un and us are expanded as follows:

u(k)
n (n, s, z) = un0(n, s) + zun1(n, s) + z2un2(n, s) + · · ·+ φ(k)

n (n, s, z)uφn(n, s) (B.37a)

u(k)
s (n, s, z) = us0(n, s) + zus1(n, s) + z2us2(n, s) + · · ·+ φ(k)

s (n, s, z)uφs (n, s) (B.37b)

uz(n, s) = w0. (B.37c)

Writing Eq. (B.37) in a more concise matrix notation we have

U (k)
ns =

{
u(k)
n

u(k)
s

}
=
[
I2 Z2 Z2

2 . . .
]

Ug0bc
Ug1bc
Ug2bc

...

+

[
φ(k)
n 0

0 φ(k)
s

]{
uφn

uφs

}
(B.38)

where I2,Z2,Z
2
2, . . . are as previously defined in Eq. (7.6) and

Ug0bc =
[
un0 us0

]>
, Ug1bc =

[
un1 us1

]>
, Ug2bc =

[
un2 us2

]>
, . . . (B.39)

By defining,

f lubc =

[
φ(k)
n 0

0 φ(k)
s

]
, Ugbc =

[
Ug0bc U

g
1bc U

g
2bc . . .

]>
, U lbc =

[
uφn uφs

]>
(B.40)

Eq. (B.38) now reads

U (k)
ns = fguU

g
bc + f lubcU lbc =

[
fgu f lubc

]{Ugbc
U lbc

}
= f

(k)
ubcUbc. (B.41)
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Substituting Eq. (B.41) into the variation of the work done on the boundary Eq. (B.36) gives

δΠΓ = −
∫
S1

([
ûn ûs

]{δtn
δts

}
+ ûzδtz

)
dS −

∫
S2

([
δun δus

]{tn − t̂n
ts − t̂s

}
+ δuz

(
tz − t̂z

))
dS

δΠΓ = −
∫
S1

(
Û>bcf

(k)>

ubc

{
δσnn

δσns

}
+ ŵ0δσnz

)
dS −

∫
S2

(
δU>bcf

(k)>

ubc

{
σnn − σ̂nn
σns − σ̂ns

}
+ δw0 (σnz − σ̂nz)

)
dS (B.42)

and finally, by integrating in the z-direction

δΠΓ = −
∫
C1

(
Û>bcδF∗bc + ŵ0δQnz

)
ds−

∫
C2

[
δU>bc

(
F∗bc − F̂∗bc

)
+ δw0

(
Qnz − Q̂nz

)]
ds (B.43)

where C1 and C2 are the boundary curves corresponding to the intersections of the reference

surface Ω with the boundary surfaces S1 and S2, respectively, and Qnz is the transverse shear

force normal to the boundary. Furthermore, F∗bc is the stress resultant vector without the stress

resultants associated with φ
(k)
,i , i.e. M∂φ

x and M∂φ
y , transformed to the local normal-tangential

coordinate system (n, s, z) of the boundary curve. Thus, when combining the coefficient of δF∗bc,
i.e. Û>bc, with the boundary coefficients of δFbc in equation Eq. (B.26), two extra zeros need to

be added to the end of vector Û>bc.
The double integral expressions in equations (B.14), (B.26), (B.33) and (B.43) combine

to form the governing field equations (7.61), whereas the line integrals combine to form the

governing boundary conditions (7.62). These equations feature two column vectors Leq and Lbc
that include the Lagrange multipliers (ux0 , uy0 , w0) and (un0 , us0 , w0), respectively, and their

derivatives. These column vectors are derived from the Lagrange multiplier terms in Eq. (B.33),

and are given by

Leq =

[
−

(
D

{
ux0

uy0

})>
∇>D>w0 0 . . .

]>

=

[
−∂ux0

∂x
−∂uy0

∂y
−∂ux0

∂y
− ∂uy0

∂x

∂2w0

∂x2

∂2w0

∂y2
2
∂2w0

∂x∂y
0 . . .

]>
(B.44)

Lbc =
[
un0 us0 − (∇nsw0)> 0 . . .

]>
=

[
un0 us0 −∂w0

∂n
−∂w0

∂s
0 . . .

]>
. (B.45)
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